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Introduction & motivation

Traditional models: density based data generation

Generative models typically infer distribution from collected data, and
sample it to generate more data.

@ Biased by sampling density
@ May miss rare populations

@ Does not preserve the geometry
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Introduction & motivation

New approach: geometry based data generation
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Diffusion geometry

Manifold learning with random walks

@ Local affinities g(x, y) = transition probs. Pr[x~y] = II:((X’};iI
X, 1

@ Markov chain/process = random walks on data manifold
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Diffusion geometry

Random walks reveal intrinsic neighborhoods

t steps
X ey

p'(x,y) =Pr[ ]
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Data generation with diffusion

Walk toward the data manifold from randomly generated points

Generate random points:
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Data generation with diffusion

Walk toward the data manifold from randomly generated points

Generate random points:

Walk towards the data manifold with diffusion: x = 5 y-p‘(x,y)

y€Edata
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Data generation with diffusion

Correct density with MGC kernel (Bermanis et al., ACHA 2016)

Separate density/geometry with new kernel: k(x,y)= )

densi
r€data ensity(r)

— _kxy)
14 Cx; )l

Use new diffusion process p(x, y) = to walk to the manifold
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Data generation with diffusion

Fill sparse areas to create uniform distribution

Question: How should we initialize new points to end up with
uniform sampling from the data manifold?

Answer: For each x € data, initialize #(x) points sampled from
N(x,X,); set £ as the mid-point between the upper & lower bounds
in the following proposition.

Proposition

The generation level {(x) required to equalize density is bounded by

1 5 - n 1 A N
det (/1 + Z)? % — 1= 0(x) s det (I + 2)* [max(d(-)) - d(x)],

where o is a scale used when defining Gaussian neighborhoods g(x,y) for the
diffusion geometry, and d(x) = ||g(x,-)||1 estimates local density.
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Applications & results

Alleviating class imbalance in classification

k-NN SVM RUSBoost

Orig SMOTE SUGAR | Orig SMOTE SUGAR
ACP 0.67 0.76 0.78 | 0.77 0.77 0.78 0.75
ACR 0.64 0.73 0.77 | 0.78 0.78 0.84 0.81
MCC | 0.66 0.74 0.78 | 0.78 0.78 0.84 0.80

Average class precision/recall (ACP/ACR), and Matthews correlation coefficient
(MCC) over 61 imbalanced datasets (10-fold cross validation).

Lindenbaum et al. (Yale) SUGAR 2018 10 / 14



Applications & results

Density correction improves clustering

Spectral Clustering Rand index of k-Means
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Applications & results

Illuminate hypothetical cell types in single-cell data from Velten et al. 2017

Recovering originally-undersampled lineage in early hematopoeisis:

| BlPre-SUGAR
50% EllPost-SUGAR
o 40%
w
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< 30% - ]
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a 20% -
| -I ] | I [ ]
PHATE1 MK Pre-B EBM MD E B N
Cell type
B-cell maturation trajectory SUGAR equalizes the total cell
enhanced by SUGAR distribution
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Applications & results

Recover gene-gene relationships in single-cell data from Velten et al. 2017

SUGAR improves module correlation and Ml identified by Velten et al.
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Velten et al., Nature Cell Biology, 19 (2017)
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Applications & results

Recover gene-gene relationships in single-cell data from Velten et al. 2017

Generated cells also follow canonical marker correlations

HOXA3 CASP1  EAF2

— K

g R =-0.323 R =0.364 R =-0.054 0.003

o Ml =1.79 M| =1.04 Ml =1.37

S .t 0.001
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Li et al., Nature communications 7 (2016)
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Conclusion

:"-".:-"-'."':-':1:..‘,. U PR

o Generate data over intrinsic geometry rather than distribution
@ Alleviate sampling bias in supervised & unsupervised learning

@ Enable exploration of sparse (or “hypothetical”) data regions
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