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Misspecified states: Examples

Breakout [mnih et al., 2015]

. lrzia—

Exploration—exploitation in RL with Misspecified State Space - R. Fruit Sequel - 1/5



TUCRL

Misspecified states: Examples

Breakout [mnih et al., 2015]
Intuitive state space: set of plausible configurations of wall, ball and paddle

. 0’&0/22/

Exploration—exploitation in RL with Misspecified State Space - R. Fruit Sequel - 1/5



TUCRL

Misspecified states: Examples

Breakout [Mnih et al., 2015]
Intuitive state space: set of plausible configurations of wall, ball and paddle

ooo s 1 180 =2 1
rS———
| |

initial state s;

oon s

. lrela—

Exploration—exploitation in RL with Misspecified State Space - R. Fruit Sequel - 1/5



TUCRL

Misspecified states: Examples

Breakout [Mnih et al., 2015]
Intuitive state space: set of plausible configurations of wall, ball and paddle

oono k=

|

initial state s; Plausible state after some time...

. lrela—

Exploration—exploitation in RL with Misspecified State Space - R. Fruit Sequel - 1/5



TUCRL

Misspecified states: Examples

Breakout [Mnih et al., 2015]
Intuitive state space: set of plausible configurations of wall, ball and paddle

oono k=

|

initial state s; Plausible state after some time... Non reachable from s;

. lrela—

Exploration—exploitation in RL with Misspecified State Space - R. Fruit Sequel - 1/5



TUCRL

Misspecified states: Examples

Breakout [mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle
Cannot be observed!
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Misspecified states: Examples

Breakout [mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle
Cannot be observed!

|

initial state s; Plausible state after some time... Non reachable from s;

Misspecified state space = d states non-observable from initial state
+ difficult to exclude explicitly from the state space
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Why is exploration more challenging with a misspecified state
space?
m All existing methods known to efficiently balance exploration and exploitation in RL with
theoretical guarantees rely on the optimism in the face of uncertainty principle

m All such methods fail to learn when the state space is misspecified

ag, ro =0

1
a1, ry = 5
Example 1 of Ortner [2008]
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Why is exploration more challenging with a misspecified state
space?
m All existing methods known to efficiently balance exploration and exploitation in RL with
theoretical guarantees rely on the optimism in the face of uncertainty principle

m All such methods fail to learn when the state space is misspecified

ag, ro =0

‘Optimism (UCB, etc.) = Optimal Strategy

1
a1, ry = 5
Example 1 of Ortner [2008]
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space?
m All existing methods known to efficiently balance exploration and exploitation in RL with
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ag, ro =0
‘ Not reachable from 5‘
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Why is exploration more challenging with a misspecified state
space?
m All existing methods known to efficiently balance exploration and exploitation in RL with

theoretical guarantees rely on the optimism in the face of uncertainty principle
m All such methods fail to learn when the state space is misspecified

ag, ro =0
‘ Not reachable from s

- rmnx

1
ay, ry = 3 Optimism
Example 1 of Ortner [2008]

The action played keeps changing: it is ag half of the time and a; the
other half = linear regret!
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Why is exploration more challenging with a misspecified state
space?
m All existing methods known to efficiently balance exploration and exploitation in RL with

theoretical guarantees rely on the optimism in the face of uncertainty principle
m All such methods fail to learn when the state space is misspecified

ag, ro =0
‘ Not reachable from s

Why not ignore s'? @ ag, 78 =1 = roax

Example 1 of Ortner [2008]

The action played keeps changing: it is ag half of the time and a; the
other half = linear regret!
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Why is exploration more challenging with a misspecified state
space?
m All existing methods known to efficiently balance exploration and exploitation in RL with

theoretical guarantees rely on the optimism in the face of uncertainty principle
m All such methods fail to learn when the state space is misspecified

ap, o = 0
M reachable from s

Why not Ignore S aop, 71J =1= T'max
linear regret if s’ is reachable o

Example 1 of Ortner [2008]

The action played keeps changing: it is ag half of the time and a; the
other half = linear regret!
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Our work

< Regret of existing methods: 5 <D S vV AT>
N

Diameter Total number of states

3 Misspecified state space <= D = +oo (infinite diameter)

) TUCRL: first algorithm able to adapt to the reachable part of the MDP

0(D® sOVAT)

Reachable diameter Number of reachable states
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