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Off-Policy Reinforcement Learning

o Off-Policy Evaluation: Evaluate a new policy 7 by only using data
from old policy .

@ Widely useful when running new RL policies is costly or impossible,
due to high cost, risk, or ethics, legal concerns:
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“Curse of Horizon”

e Importance Sampling (IS): Given trajectory T = {s;, a;}_; ~ o,
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@ The Curse of Horizon:
@ The IS weights w(7) are product of T terms; T is horizon length.

@ Variance can grow exponentially with T.

e Problematic for infinite horizon problems (T = o).
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Breaking the Curse

o Key: Apply IS on (s, a) pairs, not the whole trajectory 7
d.(s, a)
d.(s,a)’

where d, (s, a) is the stationary / average visitation distribution of
(s,a) under policy .

Re = E(s a)~d,, [W(s; a)r(s,a)], where w(s,a)=

o Stationary density ratio w(s, a):
e is NOT product of T terms.
e can be small even for infinite horizon (T = ).

o But is more difficult to estimate.
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Main Algorithm

[ @ 1.Estimate density ratio by a new minimax objective:

W = min max L(w. f.D
weW feF ( T WO)

@ 2. Value estimation by IS:

N

R: = ]E(s,a)wd7ro [W(Sa a)r(S? a)]

@ Theoretical guarantees developed for the new minimax objective.
@ Can be kernelized: Inner max has closed form if F is an RKHS.



Empirical Results
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Thank You!

Location: Room 210 & 230 AB; Poster #121
Time: Wed Dec 5th 05:00 — 07:00 PM
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