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Desired:
= Effective exploration for sparse rewards
= Quick adaptation for new tasks
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Using Structured Stochasticity

Per-timestep Exploration Structured Exploration

ﬁ«

Structured exploration: pick an intention, execute for entire episode.
Explore across different intentions
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Latent Conditioned Policies

Structured stochasticity introduced through latent conditioned policy
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Meta-Training Latent Spaces

Beyond capturing task distribution, train for quick adaptation via meta-learning
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Meta-Training Latent Spaces

Beyond capturing task distribution, train for quick adaptation via meta-learning

F"g") _—
® < .t:'t":‘:‘::-_~ of
ot =3 ds
Latent Space x xe? AN
A g\\: 1 /i‘d,\ —__ g
1 step of RL "W y

1 Ste
p Of L A
Saak s

Meta-train latent space, policy

Train with algorithm based on Model Agnostic Meta-Learning!!

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, Finn et al ICML 2017
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Experiments: Legged Locomotion
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Quick Learning of New Tasks
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Thank You!

Russell Mendonca YuXuan Liu Pieter Abbeel Sergey Levine

Please come visit our poster at
Room 210 and 230, AB #134

Find code and paper online at https://sites.google.com/view/meta-explore/



