Meta-Reinforcement Learning of Structured Exploration Strategies

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, Sergey Levine

Human Exploration vs Robot Exploration

Human Exploration vs Robot Exploration

Human Exploration vs Robot Exploration

Exploration Informed by Prior Experience

Exploration Informed by Prior Experience

Exploration Informed by Prior Experience

Desired:

- Effective exploration for sparse rewards
- Quick adaptation for new tasks

1. Explore with random but structured behaviors (exploration)

- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

Using Structured Stochasticity

Per-timestep Exploration

Structured Exploration

Structured exploration: pick an intention, execute for entire episode. Explore across different intentions

Latent Conditioned Policies

Structured stochasticity introduced through latent conditioned policy

Train latent space to capture prior task distribution

Beyond capturing task distribution, train for quick adaptation via meta-learning

Train with algorithm based on Model Agnostic Meta-Learning^[1]

Experiments: Robotic Manipulation

Random Exploration

Experiments: Robotic Manipulation

Random Exploration

MAESN exploration

Experiments: Robotic Manipulation

Random Exploration

MAESN exploration

Experiments: Legged Locomotion

Random Exploration

Experiments: Legged Locomotion

Random Exploration

MAESN exploration

Experiments: Legged Locomotion

Random Exploration

MAESN exploration

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration

- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration

Thank You!

Russell Mendonca

YuXuan Liu

Pieter Abbeel

Sergey Levine

Please come visit our poster at Room 210 and 230, AB #134

Find code and paper online at https://sites.google.com/view/meta-explore/