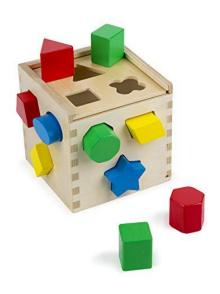
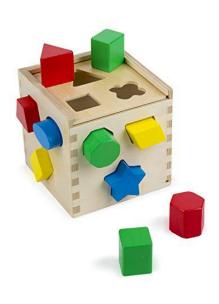
Meta-Reinforcement Learning of Structured Exploration Strategies

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, Sergey Levine

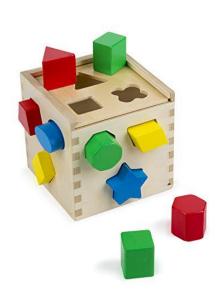
Human Exploration vs Robot Exploration

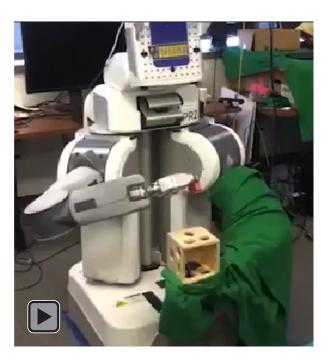


Human Exploration vs Robot Exploration

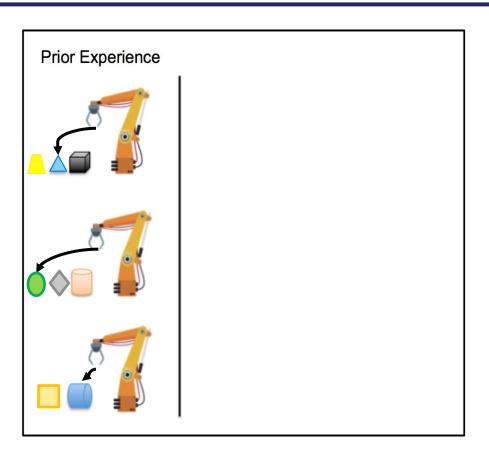


Human Exploration vs Robot Exploration

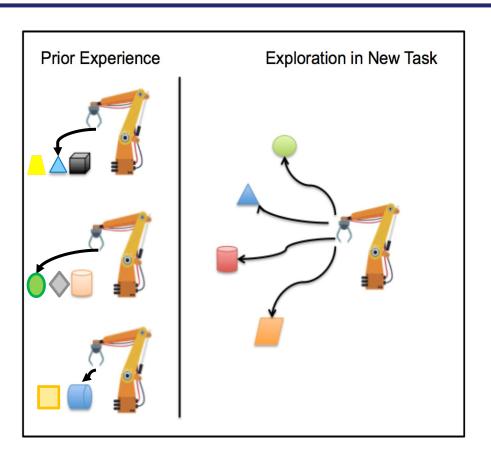




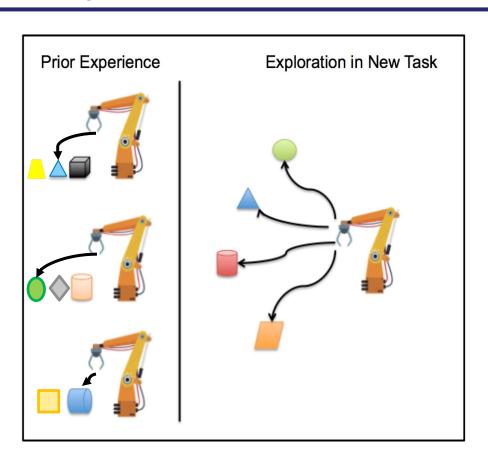
Exploration Informed by Prior Experience



Exploration Informed by Prior Experience



Exploration Informed by Prior Experience



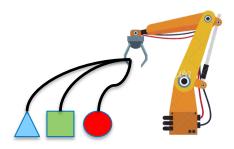
Desired:

- Effective exploration for sparse rewards
- Quick adaptation for new tasks

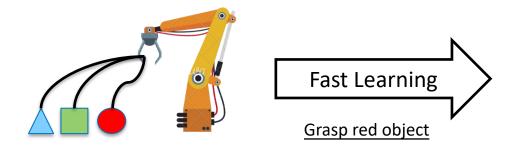
1. Explore with random but structured behaviors (exploration)

- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

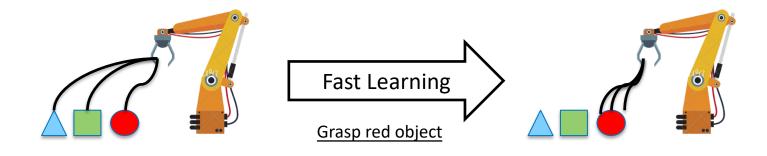
- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)



- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

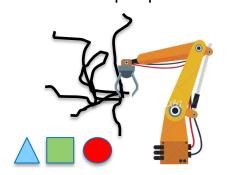


- 1. Explore with random but structured behaviors (exploration)
- 2. Explicitly train for quick learning on new tasks (adaptation)

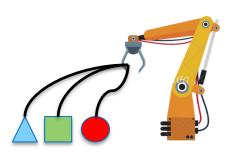


Using Structured Stochasticity

Per-timestep Exploration



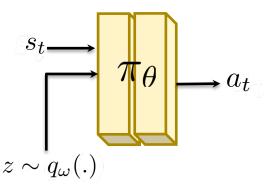
Structured Exploration



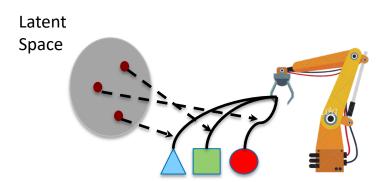
Structured exploration: pick an intention, execute for entire episode. Explore across different intentions

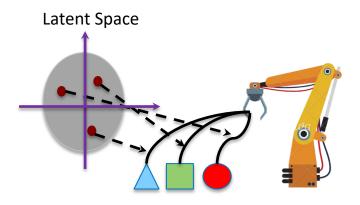
Latent Conditioned Policies

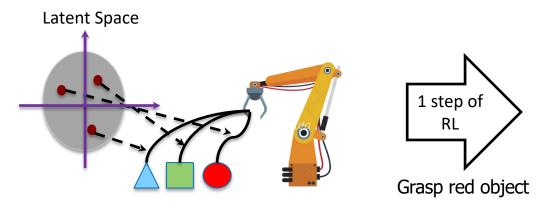
Structured stochasticity introduced through latent conditioned policy

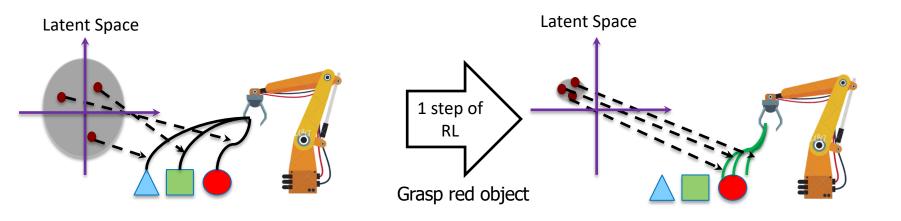


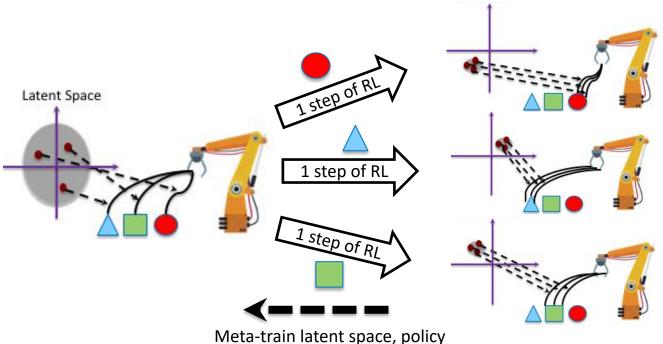
Train latent space to capture prior task distribution



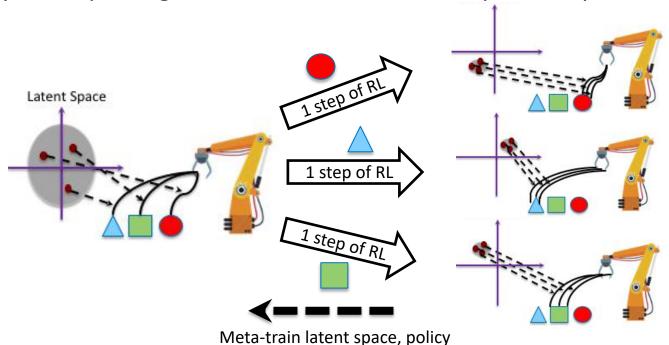








Beyond capturing task distribution, train for quick adaptation via meta-learning



Train with algorithm based on Model Agnostic Meta-Learning^[1]

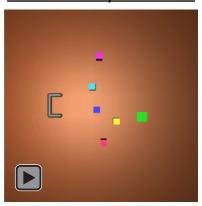
Experiments: Robotic Manipulation

Random Exploration

Experiments: Robotic Manipulation

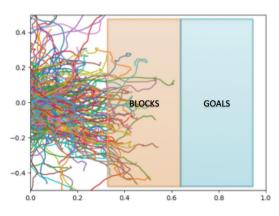
Random Exploration

MAESN exploration

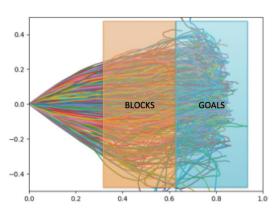


Experiments: Robotic Manipulation

Random Exploration



MAESN exploration



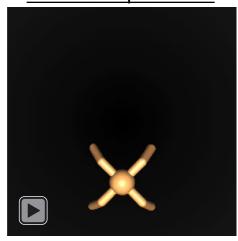
Experiments: Legged Locomotion

Random Exploration

Experiments: Legged Locomotion

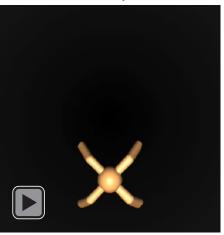
Random Exploration

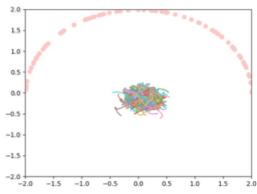
MAESN exploration



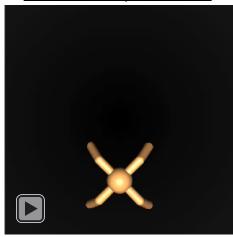
Experiments: Legged Locomotion

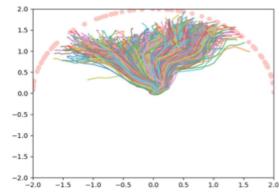
Random Exploration

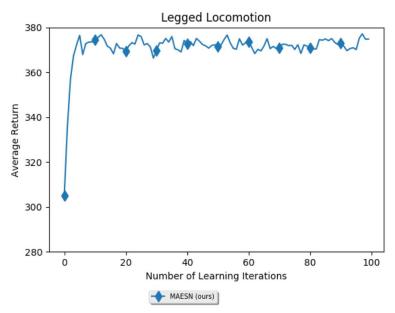




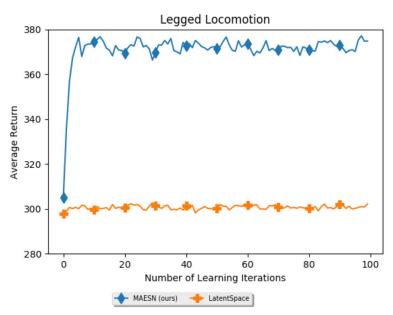
MAESN exploration



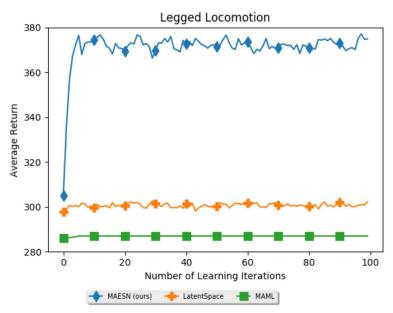




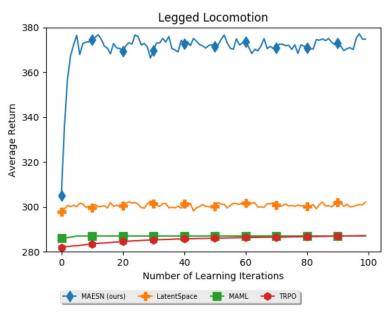
- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration



- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration



- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration



- Learns very quickly
- Higher asymptotic reward than prior methods
- Better exploration

Thank You!

Russell Mendonca

YuXuan Liu

Pieter Abbeel

Sergey Levine

Please come visit our poster at Room 210 and 230, AB #134

Find code and paper online at https://sites.google.com/view/meta-explore/