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Link Prediction (LP) Problem

Given an incomplete network, predict whether two nodes are likely to have a link.

Applications:

* Friend recommendation in social networks

* Product recommendation in ecommerce

* Interaction prediction in biological networks
 Knowledge graph completion
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Heuristic Methods for LP

Calculate a proximity score for each pair of nodes.

Table 1: Popular Heuristics for Link Prediction

Name Formula Order ° Good performance
common neighbors IT(x) NT'(y)| first
IT(x)NI'(y) |
Jaccard m first ° EaSY tO Ca.].cu].ate
preferential attachment | |T'(x)| - [T'(y)| first I bl
_ * Interpretable
Adamic-Adar 2.zl (x)NT(y) m second P
. 1
resource allocation 2zel(x)NI(y) @)l second . No training require d
Katz ¥, Bllpath(x,y) = 1| | high
PageRank dxy * qyx high
. ael(x)L benypcore(a, b) :
SimRank Y TG IT@)] high
resistance distance ——— high

Lx+lgy =215y

Notes: I'(x) denotes the neighbor set of vertex x. |path(x, y) = [| counts
the number of length-I paths between x and y. gxy is the stationary
distribution probability of y under the random walk from x with restart,
see [10]. SimRank score is a recursive definition. l;y is the (x, y) entry of
the pseudoinverse of the graph’s Laplacian matrix.



First-Order Heuristics

Notations: I'(x) is the neighbor set of node x in the graph

« The common neighbors (CN) heuristic: | I'(x) N ' (y) |

x and y are likely to have a link
if they have many common neighbors.

» First-order heuristic, need only 1-hop neighbors to compute.



First-Order Heuristics

» The preferential attachment (PA) heuristic: | '(x) || '(y) |

X prefers to connect to y if y is popular.

» First-order heuristic, only involves 1-hop neighbors.



Second-Order Heuristics

1

* The Adamic-Adar (AA) heuristic: ¥\, crconr o) log |I'(2)]

Weighted common neighbors;

Popular common neighbors contribute less.

» Second-order heuristic. Involves 2-hop neighbors of x and y.

» First-order and second-order heuristics can be calculated from local subgraphs around links.



High-Order Heuristics

 The Katz index heuristic: Y.;2, B¢|walks(x,y) = |

Sum all walks between x and y; each walk discounted by S'.
f < 1 is the discount factor

[ is the length of a walk

Longer walks contribute less.

* High-order heuristic

e Need to search the entire network.



High-Order Heuristics

* The Rooted PageRank heuristic:

Let ,, be the stationary distribution of a random walker starting from x who randomly moves to one
of its current neighbors with probability a or returns to x with probability 1 — «.

Use [m,], as the likelihood of link (x,y).

* High-order heuristic

* Need to know the entire network and iterate until convergence.



Drawbacks of Heuristic Methods

 Handcrafted graph structure features, not general.

* Have strong assumptions on link formation mechanisms.

* Only work well on certain networks.

* In our paper, we proposed SEAL:
1. Automatically learn general graph structure features.
2. No assumption on network properties at all.

3. New state-of-the-art link prediction performance based on a graph neural network.



Proposed SEAL Framework

Graph neural network

common neighbors = 3
Jaccard = 0.6

preferential attachment = 16
Katz = 0.03

Extract enclosing

subgraphs Learn graph structure features

common neighbors = 0
Jaccard =0

preferential attachment = 8
—_— Katz = 0.001

* Learn “heuristics” instead of using predefined ones.

—

Predict links

0 (non-link)

« All first-order and second-order heuristics can be learned from local enclosing subgraphs.

 How about high-order heuristics?



A y-decaying Heuristic Theory

Definition (~-decaying heuristic) A y-decaying heuristic for (x,y) has the following form:
H(z,y) =n> 7' f(z,y,1),
=1

Main results:

1. A wide range of high-order heuristics can be unified into a y-decaying heuristic framework,
including Katz index, rooted PageRank, SimRank etc. => They intrinsically have the same form!

2. Under mild assumptions, all y-decaying heuristics can be well approximated from local enclosing
subgraphs. => We don’t need the entire network to learn them!

3. The approximation error decreases exponentially with the subgraph size. => A small subgraph is
enough!
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