







# Efficient Nonmyopic Batch Active Search



Shali Jiang



**Gustavo Malkomes** 



Matthew Abbott



Benjamin Moseley



Roman Garnett

NeurIPS 2018

## Many real problems involve searching for valuable items from a large pool of candidates in an iterative fashion



**Drug discovery** 



**Materials discovery** 

























—always choose the points with highest probabilities

—always choose the points with highest probabilities

$$X^* = \underset{X}{\operatorname{arg\,max}}$$
 "expected #positives in X"

—always choose the points with highest probabilities

$$X^* = \underset{X}{\operatorname{arg\,max}}$$
 "expected #positives in X"

It's efficient but myopic, ignoring what could happen in future

—always choose the points with highest probabilities

$$X^* = \underset{X}{\operatorname{arg\,max}}$$
 "expected #positives in X"

It's efficient but myopic, ignoring what could happen in future

How can we do better?

```
X^* = \underset{X}{\operatorname{arg\,max}} "[expected #positives in X]+
```

[expected #positives in future conditioned on X]".

```
X^* = \underset{X}{\operatorname{arg\,max}} "[expected #positives in X]+
```

[expected #positives in future conditioned on X]".

Assume conditional independence after X

 $X^* = \underset{X}{\operatorname{arg\,max}}$  "[expected #positives in X]+

[expected #positives in future conditioned on X]".

Assume conditional independence after X

Efficient for sequential setting (batch size 1) (Jiang et al. (ICML 2017)).

 $X^* = \underset{X}{\operatorname{arg\,max}}$  "[expected #positives in X]+

[expected #positives in future conditioned on X]".

Assume conditional independence after X

Efficient for sequential setting (batch size 1) (Jiang et al. (ICML 2017)).

Combinatorial search in batch setting → two approaches: greedy maximization and sequential simulation









### Empirical results



Averaged over 1600 experiments (10 drug discovery datasets, 8 batch sizes, and 20 repetitions each)

T=20

T=20

every point is chosen after observing the outcomes of all previous points!

(1 point / iter) \* (20 iters) b=1

T=20

every point is chosen after observing the outcomes of all previous points!

(1 point / iter) \* (20 iters)

(5 points / iter) \* (4 iters)

b=5







points are chosen without observing the outcomes of previously added points in this batch

T=20

every point is chosen after observing the outcomes of all previous points!

(1 point / iter) \* (20 iters) 
$$b=1$$

b=5







Less adaptive decisions could lead to worse performance!

points are chosen without observing the outcomes of previously added points in this batch

T=20

every point is chosen after observing the outcomes of all previous points!

(1 point / iter) \* (20 iters) 
$$b=1$$

b=5









Less adaptive decisions could lead to worse performance!

But how much worse?

points are chosen without observing the outcomes of previously added points in this batch

## Adaptivity gap

We prove that the performance ratio between optimal sequential and batch policies is at least linear in the batch size!

$$\frac{\text{OPT}_1}{\text{OPT}_b} = \Omega\left(\frac{b}{\log T}\right)$$

## Adaptivity gap

We prove that the performance ratio between optimal sequential and batch policies is at least linear in the batch size!

$$\frac{\text{OPT}_1}{\text{OPT}_b} = \Omega\left(\frac{b}{\log T}\right)$$



matching empirical results

## Adaptivity gap

We prove that the performance ratio between optimal sequential and batch policies is at least linear in the batch size!

$$\frac{\text{OPT}_1}{\text{OPT}_b} = \Omega\left(\frac{b}{\log T}\right)$$

This insight could help us choose the batch size in cases where we have many options.



matching empirical results









# Thanks for your attention! Poster: #131



Shali Jiang



**Gustavo Malkomes** 



Matthew Abbott



Benjamin Moseley



Roman Garnett

NeurIPS 2018