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- Problem set-up

Tt = Aft + Bug + wy
Wy ~ N(07 H>

Goal: find a static state-feedback controller, u = Kx, to minimize

: T .
lIm7 s oo % y:t—() L [$;Q$t T u;ﬁRut]v
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+ Problem set-up

Tt = Afl?t + Buy + wy
W r~ N(O, H),

Goal: find a static state-feedback controller, u = Kx, to minimize

: T .
lIm7 s oo % y:t—() L [CIZ‘;th T u;Rut]a

Challenge: we don’t know the system parameters § = { A, B, 1}
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~ Learning from data
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Wy ~ N(Oa H)
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. Learning from data
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- Learning from data

[\/\/\/\u()gr Tit] = Ax; + Buy + wy| To.T
—> —
Wwe ~~ N(Oa H)
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. Learning from data

wor | @y1 = Ay + Bug + wy| o1 M
— —
Ww¢ ~~ N(Oa H)
D := {uo.T, 0.7} ‘J

From this data we can form the posterior belief over model parameters: posterior(0|D)
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. Learning from data

wor | @y1 = Ay + Bug + wy| o1 M
— —
Ww¢ ~~ N(Oa H)
D := {uo.T, 0.7} ‘J

From this data we can form the posterior belief over model parameters: posterior(0|D)

Instead of optimizing the cost for fixed parameters
cost(K |0)
We can optimize the expected cost over the posterior

cost avg(K) = | cost(K|¢)posterior(0|D)d0
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< Gonvex upper bounds

cost avg(K)

|

cost

> policy, K
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Convex upper bounds

cost avg(K) ~ cost mc(K) := ﬁZ?ﬁlcost(KW) f;, ~ posterior((|D)

cost avg(K)

|

cost

> policy, K
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X

+ Convex upper bounds

cost avg(K) =~ cost mc(K) := ﬁZ?ﬁlcost(Kwi) f;, ~ posterior((|D)

cost avg(K)
1% ‘ '
S ..
h =" cost mc(K)
g policy, K
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+ Convex upper bounds

cost avg(K) =~ cost mc(K) := ﬁZ?ﬁNOSt(KW) f;, ~ posterior((|D)

| cost bound(K|K®)

\ cost avg(K)
=7 cost mc(K)

K(Ek) policy, K
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+ Convex upper bounds

cost avg(K) =~ cost mc(K) := ﬁZ?ﬁNOSt(KW) f;, ~ posterior((|D)

cost bound(K|K D) W cost _avg(K)
“7, AN E !
h cost_mc(K)
) _' policy, K
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. Convexification

The crux of the problem is the matrix inequality

X, — @ (A; + B;K) K’ known quantities
A; +KB 248 X(i) R(zl ~ 0 decision variables
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A

Convexification

The crux of the problem is the matrix inequality

X, — @ (A; + B;K) K’ known quantities
A; +KB 283 R(ll ~ 0 decision variables

e Replace the ‘problematic’ term with a Taylor series approx.

linear approximation
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" Convexification
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The crux of the problem is the matrix inequality

X, — @ (A; + B;K) K’ known quantities
Ai+ BiKK 0 gl decision variables

K 0 R

e Replace the ‘problematic’ term with a Taylor series approx.

e | eads to a new linear matrix inequality with a smaller
feasible set.

linear approximation
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< Convexification

The crux of the problem is the matrix inequality

X, — @ (A; + B;K) K’ known quantities
Ai+ BiKK 0 gl decision variables

K 0 R

e Replace the ‘problematic’ term with a Taylor series approx.

e | eads to a new linear matrix inequality with a smaller
feasible set.

e Hence: convex upper bound.

linear approximation
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—— WOrst-case
I H2 /Hoo
proposed

better performance

more data for learning
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