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Motivation: Impressive Empirical Success

Multiple-step lookahead policies in RL give state-of-the-art-performance.

I Model Predictive Control (MPC) in RL
Negenborn et al. (2005); Ernst et al. (2009); Zhang et al. (2016);
Tamar et al. (2017); Nagabandi et al. (2018), and many more...

I Monte Carlo Tree Search (MCTS) in RL Tesauro and Galperin
(1997); Baxter et al. (1999); Sheppard (2002); Veness et al. (2009);
Lai (2015); Silver et al. (2017); Amos et al. (2018), and many
more...
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Motivation: Although the Impressive Empirical Success...

Theory on how to combine multiple-step lookahead
policies in RL is scarce.

Bertsekas and Tsitsiklis (1995); Efroni et al. (2018):

Multiple-step greedy policies at the improvement stage of Policy Iteration.

Here: Extend to online and approximate RL.
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Multiple-Step Greedy Policies: h- Greedy Policy

h-Greedy Policy w.r.t. vπ:

Optimal first action in h-horizon γ-discounted Markov Decision Process,
total reward

∑h−1
t=0 γ

tr(st, πt(st)) + γhvπ(sh).
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Multiple-Step Greedy Policies: κ- Greedy Policy

κ-Greedy Policy w.r.t vπ:

Optimal action when
Pr(Solve the h-horizon MDP) = (1− κ)κh−1.

Pr(h=2)=

(1− κ)κ

+ +

Pr(h=1)=

(1− κ)

Pr(h=3)=

(1− κ)κ2
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1-Step Greedy Policies and Soft Updates

Soft update using a 1-step greedy policy improves policy.
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1-Step Greedy Policies and Soft Updates

Soft update using a 1-step greedy policy improves policy.

A bit formally,

I Let π be a policy,

I πG1 1-step greedy policy w.r.t. vπ.

Then, ∀α ∈ [0, 1], (1− α)π + απG1 , is always better than π.

Important fact in:

Two-timescale online PI (Konda and Borkar (1999)),
Conservative PI (Kakade and Langford (2002)),
TRPO (Schulman et al. (2015)), and many more...
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Negative Result on Multiple-Step Greedy Policies

Soft update using a multiple-step greedy policy does not
necessarily improves policy.
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Negative Result on Multiple-Step Greedy Policies

Soft update using a multiple-step-greedy-policy does not
necessarily improves policy.

Necessary and sufficient condition: α is large enough.

Theorem 1

Let πGh and πGκ be the h-greedy and κ-greedy policies w.r.t. vπ. Then.

I (1− α)π + απGh is always better than π for h > 1 iff α = 1.

I (1− α)π + απGκ is always better than π iff α ≥ κ.
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How to Circumvent the Problem? (and have Theoretical Guarantees)

Give ‘natural’ solutions to the problem with theoretical guarantees:

I Two-timescale, online, multiple-step PI.

I Approximate multiple-step PI methods.

Open Problem:

More techniques to circumvent the problem.
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Take Home Messages

I Important difference between multiple- and 1-step greedy methods.

I Multiple-step PI has theoretical benefits (more discussion at the poster

session).

I Further study should be devoted.
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