Multiple-Step Greedy Policies in Online and
Approximate Reinforcement Learning

Neural Information Processing Systems, December '18

Yonathan Efroni!  Gal Dalal!  Bruno Scherrer?  Shie Mannor!

! Department of Electrical Engineering, Technion, Israel

2INRIA, Villers les Nancy, France

1/11



Motivation: Impressive Empirical Success

Multiple-step lookahead policies in RL give state-of-the-art-performance.

2/11



Motivation: Impressive Empirical Success

Multiple-step lookahead policies in RL give state-of-the-art-performance.

» Model Predictive Control (MPC) in RL
Negenborn et al. (2005); Ernst et al. (2009); Zhang et al. (2016);
Tamar et al. (2017); Nagabandi et al. (2018), and many more...

2/11



Motivation: Impressive Empirical Success

Multiple-step lookahead policies in RL give state-of-the-art-performance.

» Model Predictive Control (MPC) in RL
Negenborn et al. (2005); Ernst et al. (2009); Zhang et al. (2016);
Tamar et al. (2017); Nagabandi et al. (2018), and many more...

» Monte Carlo Tree Search (MCTS) in RL Tesauro and Galperin
(1997); Baxter et al. (1999); Sheppard (2002); Veness et al. (2009);
Lai (2015); Silver et al. (2017); Amos et al. (2018), and many

more...
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Motivation: Although the Impressive Empirical Success...

Theory on how to combine multiple-step lookahead
policies in RL is scarce.

Bertsekas and Tsitsiklis (1995); Efroni et al. (2018):

Multiple-step greedy policies at the improvement stage of Policy Iteration.

Here: Extend to online and approximate RL.
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h-Greedy Policy w.r.t. v™:

Optimal first action in h-horizon ~-discounted Markov Decision Process,
total reward 30~ v (sy, m(s0)) + 7 0™ (sn).

h-greedy policy:
Left
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max. total reward

h = 2-Greedy Policy as a Tree Search
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k-Greedy Policy w.r.t v™:

Optimal action when
P,.(Solve the h-horizon MDP) = (1 — x)x"~1.

(
)
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1-Step Greedy Policies and Soft Updates

Soft update using a 1-step greedy policy improves policy.

A bit formally,
P> Let m be a policy,
» mg, 1l-step greedy policy w.r.t. v™.

Then, Yo € [0,1], (1 — @)7 + amg,, is always better than .

Important fact in:

Two-timescale online Pl (Konda and Borkar (1999)),
Conservative Pl (Kakade and Langford (2002)),
TRPO (Schulman et al. (2015)), and many more...
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Soft update using a multiple-step-greedy-policy does not
necessarily improves policy.

Necessary and sufficient condition: « is large enough.

Let wg, and 7g, be the h-greedy and k-greedy policies w.r.t. v™. Then.
» (1 — o)m + arg, is always better than 7 for h > 1 iff o« = 1.

» (1 — a)m + ang, is always better than 7 iff « > k.

9/11



How to Circumvent the Problem? (and have Theoretical Guarantees)

10/11



How to Circumvent the Problem? (and have Theoretical Guarantees)

Give ‘natural’ solutions to the problem with theoretical guarantees:

10/11



How to Circumvent the Problem? (and have Theoretical Guarantees)

Give ‘natural’ solutions to the problem with theoretical guarantees:

» Two-timescale, online, multiple-step PI.

10/11



How to Circumvent the Problem? (and have Theoretical Guarantees)

Give ‘natural’ solutions to the problem with theoretical guarantees:
» Two-timescale, online, multiple-step PI.

» Approximate multiple-step Pl methods.

10/11



How to Circumvent the Problem? (and have Theoretical Guarantees)

Give ‘natural’ solutions to the problem with theoretical guarantees:
» Two-timescale, online, multiple-step PI.

» Approximate multiple-step Pl methods.

Open Problem:

More techniques to circumvent the problem.
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Take Home Messages

» Important difference between multiple- and 1-step greedy methods.

» Multiple-step Pl has theoretical benefits (more discussion at the poster
session).

» Further study should be devoted.
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