Bayesian Model-Agnostic Meta-Learning

Taesup Kim* (presenter), Jaesik Yoon* Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn

Model-Agnostic Meta-learning (MAML)

"gradient-based meta-learning framework"

 $abla_{ heta} \mathcal{L}_{j}$

initial parameters θ

meta-update •••••••••••••• task adaptation

Model-Agnostic Meta-learning (MAML)

For each task in a batch: Task Model Task adaptation Initial Model <u>Meta-update</u>

Gradient-Based Meta-Learning + "<u>Bayesian</u>"

LLAMA

Gaussian Approximation

•••••••••• task adaptation meta-update

No uncertainty for initial model

meta-update •••••••••• task adaptation

No uncertainty for initial model

••••••••• task adaptation meta-update

Bayesian Model-Agnostic Meta-Learning (BMAML)

MAML

LLAMA

point estimate

Gaussian approx.

BMAML

complex multimodal

meta-update ••••••••••••• task adaptation

Bayesian Model-Agnostic Meta-Learning (BMAML)

BMAML

complex multimodal

meta-update ••••••••••••• task adaptation

Bayesian Fast Adaptation (BFA)

"gradient-based meta-learning framework" "particle-based posterior approximation"

Model-Agnostic Meta-Learning (MAML) **Stein Variational Gradient Descent (SVGD)**

 θ

Stein Variational Gradient Descent (SVGD)

"particle-based posterior approximation"

"backprop to initial model through deterministic SVGD particles"

Bayesian Fast Adaptation (BFA)

Meta-loss $\mathcal{L}_{ au}(\Theta)$

Meta-update

Initial distribution

Bayesian Fast Adaptation (BFA)

Task adaptation

Initial distribution

Task 2 posterior

Task 3

"extend uncertainty-awareness to meta-update"

"Distance = Chaser Loss"

For each task, - Compute <u>CHASER PARTICLES</u>

For each task, - Compute <u>CHASER PARTICLES</u> - Compute LEADER PARTICLES

leader $\Theta_{\tau}^{n+s}(\Theta_0) = \text{SVGD}_s(\Theta_{\tau}^n(\Theta_0); \mathcal{D}_{\tau}^{\text{trn}} \cup \mathcal{D}_{\tau}^{\text{val}}, \alpha)$

Leader

For each task, - Compute <u>CHASER PARTICLES</u> - Compute <u>LEADER PARTICLES</u> - Compute <u>CHASER LOSS</u>

"Distance = Chaser Loss"

Experiments

prevent overfitting with better performance evaluate effectiveness of measured uncertainty

Experiments

better policy exploration •

See you at Poster "AB #15" (room 210 & 230)