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“particle-based posterior approximation”

Stein Variational Gradient Descent (SVGD)

“backprop to initial model through deterministic SVGD particles”

∇θi
log p(θi)

k(θi, θj)



Bayesian Fast Adaptation (BFA)

Meta-updateMeta-loss

Initial 
distribution



Bayesian Fast Adaptation (BFA)

Task adaptation

Task 2  
posterior

Task 1  
posterior

Task 3  
posterior

Initial 
distribution



Bayesian Meta-Update with Chaser Loss

“extend uncertainty-awareness to meta-update”

Chaser LeaderInitial

“Distance = Chaser Loss”

current task posterior target task posterior 



Bayesian Meta-Update with Chaser Loss

Chaser LeaderInitial

“Distance = Chaser Loss”

current task posterior target task posterior 



Bayesian Meta-Update with Chaser Loss
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Algorithm 3 Bayesian Meta-Learning with Chaser Loss (BMAML)
1: Initialize ⇥0

2: for t = 0, . . . until converge do

3: Sample a mini-batch of tasks Tt from p(T )
4: for each task ⌧ 2 Tt do
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Here, to compute the distance between the two sample sets, we make a one-to-one mapping between
the leader particles and the chaser particles and compute the Euclidean distance between the paired
particles. Note that we do not back-propagate through the leader particles because we use them as
targets that the chaser particles follow. A more sophisticated method like maximum mean discrepancy
[Borgwardt et al., 2006] can also be used here. In our experiments, setting n and s to a small number
like n = s = 1 worked well.

Minimizing the above loss w.r.t. ⇥0 places ⇥0 in a region where the chaser ⇥n
⌧ can efficiently

chase the leader ⇥n+s
⌧ in n SVGD-update steps starting from ⇥0. Thus, we call this meta-loss the

Chaser loss. Because the leader converges to the posterior distribution instead of doing empirical risk
minimization, it retains a proper level of uncertainty and thus prevents from meta-level overfitting. In
Algorithm 3, we describe the algorithm for supervised learning. One limitation of the method is that,
like other ensemble methods, it needs to maintain M model instances. Because this could sometimes
be an issue when training a large model, in the Experiment section we introduce a way to share
parameters among the particles.

4 Related Works

There have been many studies in the past that formulate meta-learning and learning-to-learn from a
probabilistic modeling perspective [Tenenbaum, 1999, Fe-Fei et al., 2003, Lawrence and Platt, 2004,
Daumé III, 2009]. Since then, the remarkable advances in deep neural networks [Krizhevsky et al.,
2012, Goodfellow et al., 2016] and the introduction of new few-shot learning datasets [Lake et al.,
2015, Ravi and Larochelle, 2017], have rekindled the interest in this problem from the perspective
of deep networks for few-shot learning [Santoro et al., 2016, Vinyals et al., 2016, Snell et al., 2017,
Duan et al., 2016, Finn et al., 2017, Mishra et al., 2017]. Among these, Finn et al. [2017] proposed
MAML that formulates meta-learning as gradient-based optimization.

Grant et al. [2018] reinterpreted MAML as a hierarchical Bayesian model, and proposed a way
to perform an implicit posterior inference. However, unlike our proposed model, the posterior on
validation set is approximated by local Laplace approximation and used a relatively complex 2nd-order
optimization using K-FAC [Martens and Grosse, 2015]. The fast adaptation is also approximated by
a simple isotropic Gaussian with fixed variance. As pointed by Grant et al. [2018], this approximation
would not work well for skewed distributions, which is likely to be the case of BNNs trained
on a few-shot dataset. The authors also pointed that their method is limited in that the predictive
distribution over new data-points is approximated by a point estimate. Our method resolves these
limitations. Although it can be expensive when training many large networks, we mitigate this cost
by parameter sharing among the particles. In addition, Bauer et al. [2017] also proposed Gaussian
approximation of the task-posterior and a scheme of splitting the feature network and the classifier
which is similar to what we used for the image classification task. Lacoste et al. [2017] proposed
learning a distribution of stochastic input noise while fixing the BNN model parameter.
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Figure 2: Experimental results in miniImagenet dataset: (a) few-shot image classification using different number
of particles, (b) using different number of tasks for meta-training, and (c) active learning setting.

particles is slightly lower than having 5 particles2. Because a similar instability is also observed in
the SVPG paper [Liu and Wang, 2016], we presume that one possible reason is the instability of
SVGD such as sensitivity to kernel function parameters. To increase the inherent uncertainty further,
in Fig. 2 (b), we reduced the number of training tasks |T | from 800K to 10K. We see that BMAML
provides robust predictions even for such a small number of training tasks while EMAML overfits
easily.

Active Learning: In addition to the ensembled prediction accuracy, we can also evaluate the ef-
fectiveness of the measured uncertainty by applying it to active learning. To demonstrate, we use
the miniImagenet classification task. To do this, given an unseen task ⌧ at test time, we first run
a fast adaptation from the meta-trained initial particles ⇥⇤

0 to obtain ⇥⌧ of the task-train poste-
rior p(✓⌧ |D⌧ ;⇥⇤

0). For this we used 5-way 1-shot labeled dataset. Then, from a pool of unla-
beled data X⌧ = {x1, . . . , x20}, we choose an item x⇤ that has the maximum predictive entropy
argmaxx2X⌧

H[y|x,D⌧ ] = �
P

y0 p(y0|x,D⌧ ) log p(y0|x,D⌧ ). The chosen item x⇤ is then re-
moved from X⌧ and added to D⌧ along with its label. We repeat this process until we consume all
the data in X⌧ . We set M to 5. As we can see from Fig. 2 (c), active learning using the Bayesian
fast adaptation provides consistently better results than EMAML. Particularly, the performance gap
increases as more examples are added. This shows that the examples picked by BMAML so as
to reduce the uncertainty, provides proper discriminative information by capturing a reasonable
approximation of the task-posterior. We presume that the performance degradation observed in the
early stage might be due to the class imbalance induced by choosing examples without considering
the class balance.

Reinforcement Learning: SVPG is a simple way to apply SVGD to policy optimization. Liu et al.
[2017] showed that the maximum entropy policy optimization can be recast to Bayesian inference. In
this framework, the particle update rule (a particle is now parameters of a policy) is simply to
replace the target distribution log p(✓) in Eq. (1) with the objective of the maximum entropy policy
optimization, i.e., Eq(✓)[J(✓)] + ⌘H[q]] where q(✓) is a distribution of policies, J(✓) is the expected
return of policy ✓, and ⌘ is a parameter for exploration control. Deploying multiple agents (particles)
with a principled Bayesian exploration mechanism, SVPG encourages generating diverse policy
behaviours while being easy to parallelize.

We test and compare the models on the same MuJoCo continuous control tasks [Todorov et al., 2012]
as are used in Finn et al. [2017]. In the goal velocity task, the agent receives higher rewards as its
current velocity approaches the goal velocity of the task. In the goal direction task, the reward is the
magnitude of the velocity in either the forward or backward direction. We tested these tasks for two
simulated robots, the ant and the cheetah. The goal velocity is sampled uniformly at random from
[0.0, 2.0] for the cheetah and from [0.0, 3.0] for the ant. As the goal velocity and the goal direction
change per task, a meta learner is required to learn a given unseen task after trying K episodes. We
implemented the policy network with two hidden-layers each with 100 ReLU units. We tested the
number of particles for M 2 {1, 5, 10} with M = 1 only for non-ensembled MAML. We describe
more details of the experiment setting in Appendix C.1.

2We found a similar instability in the relationship between the number of particles and the prediction accuracy
from the original implementation by the authors of the SVGD paper.

7

(a) (b) (c)

Figure 2: Experimental results in miniImagenet dataset: (a) few-shot image classification using different number
of particles, (b) using different number of tasks for meta-training, and (c) active learning setting.

particles is slightly lower than having 5 particles2. Because a similar instability is also observed in
the SVPG paper [Liu and Wang, 2016], we presume that one possible reason is the instability of
SVGD such as sensitivity to kernel function parameters. To increase the inherent uncertainty further,
in Fig. 2 (b), we reduced the number of training tasks |T | from 800K to 10K. We see that BMAML
provides robust predictions even for such a small number of training tasks while EMAML overfits
easily.

Active Learning: In addition to the ensembled prediction accuracy, we can also evaluate the ef-
fectiveness of the measured uncertainty by applying it to active learning. To demonstrate, we use
the miniImagenet classification task. To do this, given an unseen task ⌧ at test time, we first run
a fast adaptation from the meta-trained initial particles ⇥⇤

0 to obtain ⇥⌧ of the task-train poste-
rior p(✓⌧ |D⌧ ;⇥⇤

0). For this we used 5-way 1-shot labeled dataset. Then, from a pool of unla-
beled data X⌧ = {x1, . . . , x20}, we choose an item x⇤ that has the maximum predictive entropy
argmaxx2X⌧

H[y|x,D⌧ ] = �
P

y0 p(y0
|x,D⌧ ) log p(y0

|x,D⌧ ). The chosen item x⇤ is then re-
moved from X⌧ and added to D⌧ along with its label. We repeat this process until we consume all
the data in X⌧ . We set M to 5. As we can see from Fig. 2 (c), active learning using the Bayesian
fast adaptation provides consistently better results than EMAML. Particularly, the performance gap
increases as more examples are added. This shows that the examples picked by BMAML so as
to reduce the uncertainty, provides proper discriminative information by capturing a reasonable
approximation of the task-posterior. We presume that the performance degradation observed in the
early stage might be due to the class imbalance induced by choosing examples without considering
the class balance.

Reinforcement Learning: SVPG is a simple way to apply SVGD to policy optimization. Liu et al.
[2017] showed that the maximum entropy policy optimization can be recast to Bayesian inference. In
this framework, the particle update rule (a particle is now parameters of a policy) is simply to
replace the target distribution log p(✓) in Eq. (1) with the objective of the maximum entropy policy
optimization, i.e., Eq(✓)[J(✓)] + ⌘H[q]] where q(✓) is a distribution of policies, J(✓) is the expected
return of policy ✓, and ⌘ is a parameter for exploration control. Deploying multiple agents (particles)
with a principled Bayesian exploration mechanism, SVPG encourages generating diverse policy
behaviours while being easy to parallelize.

We test and compare the models on the same MuJoCo continuous control tasks [Todorov et al., 2012]
as are used in Finn et al. [2017]. In the goal velocity task, the agent receives higher rewards as its
current velocity approaches the goal velocity of the task. In the goal direction task, the reward is the
magnitude of the velocity in either the forward or backward direction. We tested these tasks for two
simulated robots, the ant and the cheetah. The goal velocity is sampled uniformly at random from
[0.0, 2.0] for the cheetah and from [0.0, 3.0] for the ant. As the goal velocity and the goal direction
change per task, a meta learner is required to learn a given unseen task after trying K episodes. We
implemented the policy network with two hidden-layers each with 100 ReLU units. We tested the
number of particles for M 2 {1, 5, 10} with M = 1 only for non-ensembled MAML. We describe
more details of the experiment setting in Appendix C.1.

2We found a similar instability in the relationship between the number of particles and the prediction accuracy
from the original implementation by the authors of the SVGD paper.

7

Regression Image Classification Active Learning

Experiments

• prevent over!tting with better performance 
• evaluate e ectiveness of measured uncertainty 



Experiments

Reinforcement Learning

• better policy exploration



See you at Poster “AB #15” 
(room 210 & 230)


