BourGAN: Generative Networks with Metric Embeddings

Chang Xiao

Peilin Zhong

Changxi Zheng

Mode Collapse in GAN

When we train a GAN on MNIST...

Mode Collapse in GAN

When we train a GAN on MNIST...

Mode Collapse in GAN

When we train a GAN on MNIST...

Unwanted Data

Why would mode collapse happen?

Missing Modes

Real distribution $\chi \longleftrightarrow$ Latent distribution Z

Why would mode collapse happen?

Missing Modes

Real distribution XLatent distribution Z

The discriminator can be fooled by generating a subset of data from real distribution.

Generated Samples on MNIST

Why would mode collapse happen?

Unwanted Data

Unwanted data Real distribution Latent distribution

Generated Samples on MNIST

Unwanted data between two modes might be generated.

Large gradients cause the network unstable and hard to train.

Our Approach

Sampling from Gaussian mixture model

Generated Samples on MNIST

No missing mode

No unwanted data

How to construct the Gaussian mixture?

Mode: A Geometric Structure

Modes are defined on a certain distance metric.

t-SNE visualization of MNIST for different metric

 ℓ_2 distance

EMD distance

"Classifier" distance

Locating Gaussian Centers

Bourgain's Theorem: an algorithm that embeds data points in an arbitrary metric space into ℓ_2 space with a *bounded* amount of distortion.

Missing Modes

Yet, it is possible to miss certain modes.

Our Solution: Encourage Distance Preservation

Distance constraint:
$$\|z_i-z_j\|_2=d(x_i,x_j)$$

Theoretical Results

Wasserstein distance

Pairwise distance distribution of generated data

 $< O(\log \log \log \lambda)$

Pairwise distance distribution of real data

A constant related to real distribution

Experimental Results

Experimental Results

Experimental Results

DCGAN BourGAN

Poster #17

Tue Dec 4th 05:00 -- 07:00 PM @ Room 210 & 230 AB #17

BourGAN:

Generative Networks with Metric Embeddings

Chang Xiao

Peilin Zhong

Changxi Zheng

