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Objective

Automatic 3d pose and
shape reconstruction

Single input image

Automatic, feed-forward model, to predict the 3d body
shape and pose of multiple people, given a single input image

Challenges: multiple people, occlusions, depth ambiguities, difficult to
formulate a single cost function and an integrated learning process
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* Formulate a single, feedforward model with discrete and continuous components
* Multiple tasks: body joint detection, person grouping, pose and shape estimation
* Integrated representation based on 3d reasoning at all stages
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Multi-stage architecture




Limb Scoring
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Limb Scoring collects all possible kinematic

connections between 2D detected joints
and predicts corresponding scores C.




Skeleton Grouping via B.1.P
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3D Pose Decoding & Shape Estimation
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M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL: A skinned multi-person linear model,” SIGGRAPH
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Method A1 A2 A3 A4 A5 A6 A7 A8 A9 Al0 All Al12 Al3 Al4 Al5 Mean
[1] 60 56 68 64 78 67 68 106 119 77 85 64 57 78 62 73
(2] 54 54 63 59 72 61 68 101 109 74 81 62 55 75 60 69

MubyNet 49 47 51 52 60 56 56 82 94 64 69 61 48 66 49 60

- Mean per joint 3d position error (in mm) on the Human3.6M dataset -

Method  Haggling Mafia Ultimatim Pizza Mean

[1] 217.9 1873  193.6 2213 203.4

2] 140.0 1659  150.7  156.0 153.4

MubyNet 1414 1523 1450  162.5 150.3

MubyNet .4 788 66.8 943 721
Fine-Tuned

- MPJ3DPE on the CMU Panoptic dataset -

Method MPJPE (mm)
[1] 63.35
MubyNet 59.31
MubyNet Attention 58.40

- MPJ3DPE on the Human80k dataset -
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