Dynamic Network Model from Partial Observations Elahe Ghalebi ¹, Baharan Mirzasoleiman ², Radu Grosu ¹, Jure Leskovec ² ¹ TU Wien and ² Stanford University NeurIPS 2018 # Can evolving network be inferred and modeled without directly observing their nodes and edges? - In many applications, the edges of a dynamic network might not be observed - We can only observe the dynamics of stochastic cascading process e.g. information diffusion, virus propagation occurring over the unobserved network #### 1- Extracting Observation from Diffusion Data Find the set of possible edges in each cascade c_i as $E_{c_i} = \{e_{uv} | t_u^{c_i} < t_v^{c_i} < \infty\}$ 1- Extracting Observation from Diffusion Data Calculate probability distribution over edges consistent with each cascade E_{c_i} Calculate marginal probability of every edge in each E_{c_i} - 1- Extracting Observation from Diffusion Data - 2- Update the model with the extracted observation X_1 using a collapsed Gibbs sampler Calculate probability distribution over edges consistent with each cascade E_{c_i} Calculate marginal probability of every edge in each E_{c_i} - 1- Extracting Observation from Diffusion Data - 2- Update the model with the extracted observation X_2 using a collapsed Gibbs sampler Calculate probability distribution over each E_{c_i} using updated edge probabilities from model Calculate marginal probability of every edge in each E_{c_i} ### **Online Dynamic Network Inference** 1. Discretize time into intervals with length $\boldsymbol{\omega}$ 2. Consider only infection times in current interval $$t^c \in [(i-1)\omega, i\omega], \ \forall c \in C$$ 3. Update model with the observations in current $\boldsymbol{\omega}$ #### **Performance Evaluation** Dynamic Bankruptcy Prediction European country's financial transactions: 1,197,116 transactions;103,497 companies | | | 2012 | | | 2014 | | 2016 | | |-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|---------------------|---------------------| | MAP@k | @10 | @20 | @30 | @10 | @20 | @30 @10 | @20 | @30 | | INFOPATH
DYFERENCE | 4.0
17.6 | 5.3
19.1 | 6.6
20.6 | 35.0
62.0 | 34.5
51.9 | 30.0 54.7
38.1 69.6 | 65.0
85.7 | 65.0
85.7 | | Hits@k | @10 | @20 | @30 | @10 | @20 | @30 @10 | @20 | @30 | | InfoPath
Dyference | 20.0
40.0 | 25.0
45.0 | 26.6
46.6 | 50.0
70.0 | 55.0
65.0 | 50.0 80.0
50.0 80.0 | 65.0
70.0 | 65.0
70.0 | Our algorithm significantly outperforms the baselines #### **Conclusion** ✓ Our algorithm provides a *generative probabilistic model* which: - ◆ Identifies the underlying time-varying community structure - ◆ Obtains dynamic predictive distribution over the edges - ◆ Can be used for diffusion prediction, predicting the most influential nodes, and bankruptcy prediction Poster: Today (Wed Dec 5th. @ Room 210 & 230) #7