Dynamic Network Model from Partial Observations

Elahe Ghalebi ¹, Baharan Mirzasoleiman ², Radu Grosu ¹, Jure Leskovec ²

¹ TU Wien and ² Stanford University

NeurIPS 2018

Can evolving network be inferred and modeled without directly observing their nodes and edges?

- In many applications, the edges of a dynamic network might not be observed
- We can only observe the dynamics of stochastic cascading process e.g. information diffusion, virus propagation occurring over the unobserved network

1- Extracting Observation from Diffusion Data

Find the set of possible edges in each cascade c_i as $E_{c_i} = \{e_{uv} | t_u^{c_i} < t_v^{c_i} < \infty\}$

1- Extracting Observation from Diffusion Data

Calculate probability distribution over edges consistent with each cascade E_{c_i}

Calculate marginal probability of every edge in each E_{c_i}

- 1- Extracting Observation from Diffusion Data
- 2- Update the model with the extracted observation X_1 using a collapsed Gibbs sampler

Calculate probability distribution over edges consistent with each cascade E_{c_i}

Calculate marginal probability of every edge in each E_{c_i}

- 1- Extracting Observation from Diffusion Data
- 2- Update the model with the extracted observation X_2 using a collapsed Gibbs sampler

Calculate probability distribution over each E_{c_i} using updated edge probabilities from model

Calculate marginal probability of every edge in each E_{c_i}

Online Dynamic Network Inference

1. Discretize time into intervals with length $\boldsymbol{\omega}$

2. Consider only infection times in current interval

$$t^c \in [(i-1)\omega, i\omega], \ \forall c \in C$$

3. Update model with the observations in current $\boldsymbol{\omega}$

Performance Evaluation

Dynamic Bankruptcy Prediction

European country's financial transactions: 1,197,116 transactions;103,497 companies

		2012			2014		2016	
MAP@k	@10	@20	@30	@10	@20	@30 @10	@20	@30
INFOPATH DYFERENCE	4.0 17.6	5.3 19.1	6.6 20.6	35.0 62.0	34.5 51.9	30.0 54.7 38.1 69.6	65.0 85.7	65.0 85.7
Hits@k	@10	@20	@30	@10	@20	@30 @10	@20	@30
InfoPath Dyference	20.0 40.0	25.0 45.0	26.6 46.6	50.0 70.0	55.0 65.0	50.0 80.0 50.0 80.0	65.0 70.0	65.0 70.0

Our algorithm significantly outperforms the baselines

Conclusion

✓ Our algorithm provides a *generative probabilistic model* which:

- ◆ Identifies the underlying time-varying community structure
- ◆ Obtains dynamic predictive distribution over the edges
- ◆ Can be used for diffusion prediction, predicting the most influential nodes, and bankruptcy prediction

Poster: Today (Wed Dec 5th. @ Room 210 & 230) #7

