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Batch normalization

Shortcomings:

e Assumes independence between samples (problem when modeling
time-series, RL, GANs, metric-learning etc.)

 Why it works? Interaction with other regularization

* Significant computational and memory impact, with data-bound

operations —up to 25% of computation time in current models
(Gitman, 17’)

* Requires high-precision operations ( Zixl-z) , humerically unstable.



Batch-norm Leads to norm invariance

The key observation:

e Given input x, weight vector w, its direction w = ”Vm‘j—”

e Batch-norm is norm invariant: BN (||w||lWwx) = BN(wx)

* Weight norm only affects effective learning rate, e.g. in SGD:

A = it (I — i ') VL(w) + O(n?)
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Weight decay before BN is redundant
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validation error

Improving weight-norm

This can help to make weight-norm work for large-scale models
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Replacing Batch-norm — switching norms

o 5 L ~ x; — (x)
* Batch-normalization — just scaled L“ normalization: X; = 1
* More numerically stable norms: \/—ﬁHx—(x)Hz
lxlly = Xl ¢ || o = max;{|x;}

We use additional scaling constants so that the norm will behave similarly
to L?, by assuming that neural input is Gaussian, e.g.:

L0l = |5 2Ele—0oll



validation error

L' Batch-norm (Imagenet, Resnet)
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Low precision batch-norm

e L1 batch-norm alleviates low-precision difficulties of batch-norm.
* Can now train using Batch-Norm on ResNet50 without issues on FP16:

Regular BN in FP16 fails

validation error
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With a few more tricks...

e Can now train ResNet18 ImageNet with bottleneck operations in Int8:

validation error
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Thank you for your time!
Come visit us at poster #27
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