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Motivation: Detecting Abnormal Samples

* A classifier can provide a meaningful answer
only if a test sample is reasonably similar to the training samples

* E.g., training data = animal
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* However, it sees many unknown/unseen test samples in practice
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* A classifier can provide a meaningful answer
only if a test sample is reasonably similar to the training samples

* However, it sees many unknown/unseen test samples in practice
* E.g., training data = animal
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* It raises a critical concern when deploying the classifier in real-world systems
* E.g., Rarely-seen items can cause the self-driving car accident

—» Deep neural networks

Y
Sunflower = Go straight = Crash!!




Motivation: Detecting Abnormal Samples

* A classifier can provide a meaningful answer
only if a test sample is reasonably similar to the training samples

* However, it sees many unknown/unseen test samples in practice
* E.g., training data = animal

99% ) (g 99% )
[ classifier [
@ > @ @ >
dog cat \_ dog cat )/

* It raises a critical concern when deploying the classifier in real-world systems
* E.g., Rarely-seen items can cause the self-driving car accident

Deep neural networks
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Sunflower = Go straight = Crash!!
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e Our goal is to design the classifier to say “l don’t know”



Motivation: Detecting Abnormal Samples

* Detecting test samples drawn sufficiently far away from the training distribution

statistically or adversarially [ ﬁ @ H “ ]
» [ Confidence ] Training distribution, e.g., animal
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* One can consider a posterior distribution, i.e., P(y|x), from a classifier

= == Decision boundary
O @ Training samples

* Unknown samples

* However, it is well known that the posterior distribution can be easily overconfident even for
such abnormal samples [Balaji ‘17]
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* One can consider a posterior distribution, i.e., P(y|x), from a classifier
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* For the issue, we consider to model the data distribution, i.e., P(x|y)



Mahalanobis Distance-based Confidence Score

* Main idea: Post-processing a generative classifier
* Given a pre-trained softmax classifier, we post-process a simple generative classifier on

hidden feature spaces:
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* How to estimate the parameters?
* Empirical class mean and covariance matrix

o= 3 Fx), E= 130 Y (k) — ) (£) ~ )T

1:Y;=cC Cc 1:Y;=c

e Using training data {(x1,41),...,(xn,yn)}




Mahalanobis Distance-based Confidence Score

* Main idea: Post-processing a generative classifier

* Given a pre-trained softmax classifier, we post-process a simple generative classifier on
hidden feature spaces:
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 Why Gaussian? the posterior distribution of the generative classifier (with a tied covariance) is
equivalent to the softmax classifier
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Mahalanobis Distance-based Confidence Score

* Main idea: Post-processing a generative classifier

* Given a pre-trained softmax classifier, we post-process a simple generative classifier on
hidden feature spaces:
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 Why Gaussian? the posterior distribution of the generative classifier (with a tied covariance) is
equivalent to the softmax classifier

* Our main contribution: New confidence score
* Mahalanobis distance between a test sample and a closest class Gaussian

M(x) = max log P(f(x)|ly = c)
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Experimental Results

* Application to detecting out-of-distribution samples

e State-of-the-art baseline: ODIN [Liang’ 18]

* Maximum value of a posterior distribution after
post-processing

* DenseNet-110 [Huang ‘17] trained on the CIFAR-
100 dataset

Out-of-distribution: TinylmageNet
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e Our method outperforms the ODIN |

* Application to detecting the adversarial samples

* State-of-the-art baseline: LID [Ma’ 18]

e KNN based confidence score: Local Intrinsic
Dimensionality

* ResNet-34 [He’ 16] trained on the CIFAR-10
dataset
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Conclusion

* Deep generative classifiers have been largely dismissed recently

* Deep discriminative classifiers (e.g., softmax classifier) typically outperform them for fully-
supervised classification settings
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Conclusion

* Deep generative classifiers have been largely dismissed recently

* Deep discriminative classifiers (e.g., softmax classifier) typically outperform them for fully-
supervised classification settings

 We found that the (post-processed) deep generative classifier can outperform the
softmax classifier across multiple tasks:

* Detecting out-of-distribution samples
* Detecting adversarial samples

* Other contributions in our paper
* More calibration techniques: input pre-processing, feature ensemble
* More applications: class-incremental learning
* More evaluations: robustness of our method

* Poster session: Room 210 & 230 AB #30
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