
Improving Neural Program
Synthesis with Inferred
Execution Traces
Richard Shin1 Illia Polosukhin2 Dawn Song1

Poster: Room 210 & 230 AB #31

1 UC Berkeley
2 NEAR Protocol

– For program synthesis from input-output examples,
end-to-end neural networks have become popular

– Current research trend: add better inductive bias to help model learn
– Intuitively, execution traces are a great inductive bias for program synthesis

Background

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Input Output

def run():
 repeat(2):
 turnRight()
 move()

Desired program

Encoder-decoder
neural network

I/O example 1

I/O example 2

I/O example 3

Background

– Program synthesis from execution traces should be an easier task:
– Strict superset of information in input-output example
– Contains detailed information about the desired program state at each step of execution
– Greater supervision about the effects of each elementary operation

Input
Step 1

Output
Step 4

def run():
 repeat(2):
 turnRight()
 move()

Desired program

Trace-based
synthesizer

Step 2 Step 3

Trace 3
Trace 2

Trace 1

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Main question:
Given input-output examples, can we infer execution traces automatically and
use the inferred traces to better synthesize programs?

Our findings:
Yes. On the Karel domain, we achieve state-of-the-art results, improving
accuracy for both simple and complex programs.

Our hypothesis:
Adding an inductive bias in the form of explicit trace inference improves program
synthesis.

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Karel the Robot

Simple programming language
designed for teaching programming.

An imperative program controls an
agent (“Karel the Robot”) within a grid
world.

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Summary of approach
Input Output

Step 1
I/O → Trace

Model

Step 1 Step 4Step 2 Step 3

Step 2
Trace → Code

Model

Step 1 Step 4Step 2 Step 3

def run():
 repeat(2):
 turnRight()
 move()

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

Convolutions → FC

<s> turnRight turnRight move

</s>turnRight turnRight move

Conv → FC Conv → FC Conv → FC

Input/output pair
Intermediate states

Execution trace
predicted from I/O

I/O → Trace

turnRight turnRight Input 2 Output 2move

turnRight turnRight Input 1 Output 1

<s> repeat 2 { turnRight

Convolutions → FC

Execution trace
embedding

: attention

x5 x5 x5 x5 x5
Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

repeat 2 { turnRight

...

...

}

move

Trace → Code

Program tokens

Evaluation

– We used the same dataset as Bunel et al [1], consisting of
○ 1,116,854 training examples
○ 2,500 test examples

Each example contains the ground truth program and 6 input-output pairs.

– To train the models:
○ We train the I/O → Trace model on 1,116,854 ⨉ 6 execution traces from the training set.
○ By running the trained I/O → Trace model over the training data, we obtain inferred traces for

each example.
○ We train the Trace → Code model with the inferred traces from the I/O → Trace model.

– Model receives 5 input-output pairs; 6th is held out.
[1] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis. ICLR 2018.

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Previous
work

Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Previous
work

inferred program
textually matches the

ground truth

Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Previous
work

inferred program
textually matches the

ground truth inferred program
executes correctly on all
6 input-output pairs

Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Previous
work

whether any of the 50 beam search outputs
executes correctly on all 6 input-output pairs

Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Previous
work

1. Enumerate the top 50 program outputs in order using beam search
2. Test each candidate program on the 5 specifying input-output pairs

3. Given the first program correct on those 5 pairs, see if it works
correctly on the held-out 6th program

Improving Neural Program Synthesis with Inferred Execution Traces. Richard Shin, Illia Polosukhin, Dawn Song.
Poster: Room 210 & 230 AB #31

Slice % of dataset I/O → Code I/O → Trace → Code Δ%

No control flow 26.4% 100.0% 100.0% +0.0%

With conditionals 15.6% 87.4% 91.0% +3.6%

With loops 29.9% 91.3% 94.3% +3.0%

With conditionals and loops 73.6% 79.0% 84.8% +5.8%

Program length 0–15 44.8% 99.5% 99.5% +0.0%

Program length 15–30 40.7% 80.8% 86.9% +6.1%

Program length 30+ 14.5% 48.6% 61.0% +12.4%

(all numbers are top-1 generalization)

Input Output

1.
I/O → Trace

Model

Step 1 Step 4Step 2 Step 3

2.
Trace → Code

Model

Step 1 Step 4Step 2 Step 3

def run():
 repeat(2):
 turnRight()
 move()

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

Thanks for listening!

Come see our poster at
Room 210 & 230 AB #31

