
Improving Neural Program 
Synthesis with Inferred 
Execution Traces
Richard Shin1  Illia Polosukhin2  Dawn Song1

Poster: Room 210 & 230 AB #31

1 UC Berkeley
2 NEAR Protocol



– For program synthesis from input-output examples,
end-to-end neural networks have become popular 

– Current research trend: add better inductive bias to help model learn
– Intuitively, execution traces are a great inductive bias for program synthesis

Background
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Background

– Program synthesis from execution traces should be an easier task:
– Strict superset of information in input-output example
– Contains detailed information about the desired program state at each step of execution
– Greater supervision about the effects of each elementary operation

Input
Step 1

Output
Step 4

def run():
  repeat(2):
    turnRight()
  move()

Desired program

Trace-based 
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Main question:
Given input-output examples, can we infer execution traces automatically and 
use the inferred traces to better synthesize programs?

Our findings:
Yes. On the Karel domain, we achieve state-of-the-art results, improving 
accuracy for both simple and complex programs.

Our hypothesis:
Adding an inductive bias in the form of explicit trace inference improves program 
synthesis.
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Karel the Robot

Simple programming language 
designed for teaching programming.

An imperative program controls an 
agent (“Karel the Robot”) within a grid 
world.
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Summary of approach
Input Output

Step 1
I/O → Trace

Model

Step 1 Step 4Step 2 Step 3

Step 2
Trace → Code 

Model

Step 1 Step 4Step 2 Step 3

def run():
  repeat(2):
    turnRight()
  move()

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>



Convolutions → FC 

<s> turnRight turnRight move

</s>turnRight turnRight move

Conv → FC Conv → FC Conv → FC 

Input/output pair 
Intermediate states

Execution trace 
predicted from I/O

I/O → Trace



turnRight turnRight Input 2 Output 2move

turnRight turnRight Input 1 Output 1

<s> repeat 2 { turnRight

Convolutions → FC 

Execution trace 
embedding

: attention

x5 x5 x5 x5 x5
Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

repeat 2 { turnRight

...

...

}

move

Trace → Code

Program tokens



Evaluation

– We used the same dataset as Bunel et al [1], consisting of
○ 1,116,854 training examples
○ 2,500 test examples

Each example contains the ground truth program and 6 input-output pairs.

– To train the models:
○ We train the I/O → Trace model on 1,116,854 ⨉ 6 execution traces from the training set.
○ By running the trained I/O → Trace model over the training data, we obtain inferred traces for 

each example.
○ We train the Trace → Code model with the inferred traces from the I/O → Trace model.

– Model receives 5 input-output pairs; 6th is held out.
[1] Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli.
Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis. ICLR 2018.
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Top-1 Top-50

Exact Match Generalization Guided Search Generalization

MLE (Bunel et al. 2018) 39.94% 71.91% — 86.37%

RL_beam_div_opt (Bunel et al. 2018) 32.71% 77.12% — 85.38%

I/O → Code, MLE (reimpl. of row 1) 40.1% 73.5% 84.6% 85.8%

I/O → Trace → Code, MLE 42.8% 81.3% 88.8% 90.8%
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1. Enumerate the top 50 program outputs in order using beam search
2. Test each candidate program on the 5 specifying input-output pairs

3. Given the first program correct on those 5 pairs, see if it works 
correctly on the held-out 6th program
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Slice % of dataset I/O → Code I/O → Trace → Code Δ%

No control flow 26.4% 100.0% 100.0% +0.0%

With conditionals 15.6% 87.4% 91.0% +3.6%

With loops 29.9% 91.3% 94.3% +3.0%

With conditionals and loops 73.6% 79.0% 84.8% +5.8%

Program length 0–15 44.8% 99.5% 99.5% +0.0%

Program length 15–30 40.7% 80.8% 86.9% +6.1%

Program length 30+ 14.5% 48.6% 61.0% +12.4%

(all numbers are top-1 generalization)



Input Output

1.
I/O → Trace

Model

Step 1 Step 4Step 2 Step 3

2.
Trace → Code 

Model

Step 1 Step 4Step 2 Step 3

def run():
  repeat(2):
    turnRight()
  move()

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

turnRight turnRight move <end>

Thanks for listening!

Come see our poster at
Room 210 & 230 AB #31


