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» One fundamental question: are the representations learned by deep nets robust?
In other words, are the learned representations commonly shared across multiple
deep nets trained on the same task?
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Motivation

» In particular, suppose we have two deep nets with the same architecture trained
on the same training data but from different initializations.

> Given a set of test examples,
do the two deep nets share similarity in their output of layer i ?

» When layer i is the input layer, the similarity is high because both deep nets take the
same test examples as input.

» When layer i is the final output layer that predicts the classification labels, the
similarity is also high assuming both deep nets have tiny test error.

» How similar are intermediate layers?

» Do some groups of neurons in an intermediate layer learn features/representations
that both deep nets share in common? How large are these groups?
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For test examples a1, - -, aq,
there exist A and B such that
for all i,
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We say ({X, Y}, {Z, W}) form an exact match!
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Exact/Approximate Matches between Two Groups of Neurons

» Suppose ai,ap, - ,ay are the test examples. The output of neuron X on these
test examples form a vector (X(a1), X(az),- -, X(ag)) called the activation vector
[Raghu et al., 2017].

P If the activation vectors of two groups of neurons span the same linear subspace,
we say the two groups of neurons form an exact match.

» If the activation vector of every neuron in each group is e-close to the linear
subspace spanned by the other group, we say the two groups form an
e-approximate match.

» Vector u is e-close to linear subspace S if the sine of the angle between u and S is at
most ¢, or equivalently, minyes ||lu — v||2 < g||u]».
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Maximum Matches and Simple Matches

» Matches are closed under union, so there is a unique maximum match.

> We define simple matches to be matches that are not the union of smaller
matches.

» Any match is a union of simple matches.

> We designed algorithms for finding the maximum match and the simple matches,
and we implemented the algorithms to conduct experiments.



Experimental Findings: Few Matches in Intermediate Layers

Figure: Size of maximum match / number of neurons across layers
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Figure: Size of maximum match / number of neurons across layers
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Thank you!

Come to the poster for more details!

05:00 — 07:00 PM @ Room 210 & 230 AB #26



