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Multichannel Sparse Blind Deconvolution (MSBD)

Model:
@ Given circular convolution: y; = z; ® f,fori =1,2,..., N
@ Solve for z; and f
Assumptions:
@ f € R™: invertible signal
@ x; € R": sparse filters
Applications:
@ opportunistic underwater acoustics

Open problem:
@ Guaranteed algorithm for unconstrained f
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Model:
@ Given circular convolution: y; = z; ® f,fori =1,2,..., N
@ Solve for z; and f
Assumptions:
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Multichannel Sparse Blind Deconvolution (MSBD)

Model:
@ Given circular convolution: y; = z; ® f,fori =1,2,..., N
@ Solve for z; and f
Assumptions:
@ f € R™: invertible signal
@ x, € R™: sparse filters

Applications:

@ super-resolution fluorescence microscopy

Open problem:
@ Guaranteed algorithm for unconstrained f




Formulation

Solving for inverse filter

@ Find the inverse h of f
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@ Solution: scaled & shifted
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Formulation
Solving for inverse filter

@ Find the inverse h of f
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@ Solution: scaled & shifted

Smooth formulation

L, ly

@ min. “sparsity” /; norm ~ max. “spiky” £, norm
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Preconditioner R := (gt S1, €, Cy,) ™2

@ Solution: signed & shifted




Main Result

Theorem (Geometric Analysis [L. and Bresler, 2018])
If

o {z;}Y, c R": Bernoulli-Rademacher

@ N 2 polylog(n)

Then w.h.p.,

@ local minima < signed & shifted ground truth
@ objective function:

o near local minima: strongly convex
o near local maxima & saddle points: negative curvature (strict saddle points)




Geometric Structure
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First-Order Algorithm

Optimize the sparsity promoting objective over the unit sphere

@ Manifold gradient descent: h(“*1) = Py, 1 (") — 4V (k"))
o gradient descent along the tangent space
o retraction (projection onto the sphere)

@ Time complexity (per iteration): O(Nnlogn)

Theorem

If
@ geometric properties
@ random initialization h®> ~ Uniform(S™~!)
o fixed step size

Then manifold gradient descent
@ converges to a local minimum (~ signed & shifted ground truth) a.s.
@ achieves accuracy p after T Z poly(n/p) steps




Empirical Phase Transition

@ Random f € R", Bernoulli-Rademacher z; € R"

@ Noise level: 20dB

@ lteration number T' = 100, step size v = 0.1

Nvs.n
(fix 6 = 0.1)
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@ Empirical success:
o N 2 nb
o weak dependence on
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Empirical Convergence

Error Accuracy
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Application: SR Fluorescence Microscopy

Time resolved images
@ fluorophores — sparse
@ random activation = random




Application: SR Fluorescence Microscopy
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Application: SR Fluorescence Microscopy
blurry image true kernel
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Thank you!



