LISTA: Theoretical Linear Convergence, Practical Weights and Thresholds Xiaohan Chen*, Jialin Liu[†], Zhangyang Wang*, and Wotao Yin[†] * TAMU, CSE † UCLA, Math NeurIPS'18 ## Overview Recover $\mathbf{sparse}\ x^*$ from $$b := Ax^* + \text{white noise}$$ Our methods improve on LISTA (Gregor&LeCun'10) and related work by - learning fewer parameters (faster training) - adding support detection (faster recovery) - proving linear convergence and robustness (theoretical guarantee) # Review: ISTA and LISTA ## **ISTA** (iterative soft thresholding) $$\boldsymbol{x}^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{A}^T (b - A \boldsymbol{x}^{(k)}) \right).$$ α,θ are chosen by hand or cross validation. ## Review: ISTA and LISTA ## ISTA (iterative soft thresholding) $$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(x^{(k)} + \alpha A^T (b - Ax^{(k)}) \right).$$ α, θ are chosen by hand or cross validation. #### **LISTA** (Learned ISTA) $$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta^k} \left(W_1^k b + W_2^k x^{(k)} \right).$$ θ^k, W_1^k, W_2^k are chosen by stochastic optimization $$\underset{\{\theta^k, W_1^k, W_2^k\}}{\operatorname{minimize}} \left\{ \mathbb{E}_{x^\star, b} \| \boldsymbol{x}^K(b) - \boldsymbol{x}^\star \|^2 \right\}$$ using synthesized (x^*, b) obeying $b = Ax^* +$ white noise. ## Review: ISTA and LISTA ## ISTA (iterative soft thresholding) $$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(x^{(k)} + \alpha A^T (b - Ax^{(k)}) \right).$$ α, θ are chosen by hand or cross validation. #### **LISTA** (Learned ISTA) $$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta^k} \left(W_1^k b + W_2^k x^{(k)} \right).$$ θ^k, W_1^k, W_2^k are chosen by stochastic optimization $$\underset{\{\theta^k, W_1^k, W_2^k\}}{\mathsf{minimize}} \left\{ \mathbb{E}_{x^\star, b} \| x^K(b) - x^\star \|^2 \right\}$$ using synthesized (x^{\star},b) obeying $b=Ax^{\star}+$ white noise. Compare: ISTA is slow, no training. LISTA is fast, difficult-to-train. # Proposed — coupled LISTA **LISTA-CP**: couple W_1^k and W_2^k via $$W_1^k A + W_2^k = I.$$ We show: $x^{(k)} \to x^*$ implies this relation to hold asymptotically. # Proposed — support selection #### LISTA-CPSS: support selection - Only the large coordinates pass activations to the next iteration. - Ideas from Linearized Bregman iteration (kicking)¹ and Fixed-Point Continuation method (FPC)². ¹Stanley Osher et al. '2011 ²Elaine Hale, Wotao Yin, Yin Zhang '2008 # Robust global linear convergence ## Theorem Fix A, sparsity level s, and noise level σ . There exist $\{\theta^k, W_1^k\}$ such that LISTA-CP obeys $$||x^{(k)} - x^*||_2 \le sC_1e^{-C_2k} + C_3\sigma, \quad k = 1, 2, \dots$$ where $C_1, C_2, C_3 > 0$ are constants. LISTA-CPSS improves the constants C_2, C_3 . # Weight coupling test - CP can stabilize intermediate results. - CP will not hurt final recovery performance. # Support selection test (no noise) # Thank you! 10:45 AM - 12:45 PM Room 210 & 230 AB #163 Welcome to our poster for more details!