LISTA: Theoretical Linear Convergence, Practical Weights and Thresholds

Xiaohan Chen*, Jialin Liu[†], Zhangyang Wang*, and Wotao Yin[†]

* TAMU, CSE

† UCLA, Math

NeurIPS'18

Overview

Recover $\mathbf{sparse}\ x^*$ from

$$b := Ax^* + \text{white noise}$$

Our methods improve on LISTA (Gregor&LeCun'10) and related work by

- learning fewer parameters (faster training)
- adding support detection (faster recovery)
- proving linear convergence and robustness (theoretical guarantee)

Review: ISTA and LISTA

ISTA (iterative soft thresholding)

$$\boldsymbol{x}^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{A}^T (b - A \boldsymbol{x}^{(k)}) \right).$$

 α,θ are chosen by hand or cross validation.

Review: ISTA and LISTA

ISTA (iterative soft thresholding)

$$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(x^{(k)} + \alpha A^T (b - Ax^{(k)}) \right).$$

 α, θ are chosen by hand or cross validation.

LISTA (Learned ISTA)

$$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta^k} \left(W_1^k b + W_2^k x^{(k)} \right).$$

 θ^k, W_1^k, W_2^k are chosen by stochastic optimization

$$\underset{\{\theta^k, W_1^k, W_2^k\}}{\operatorname{minimize}} \left\{ \mathbb{E}_{x^\star, b} \| \boldsymbol{x}^K(b) - \boldsymbol{x}^\star \|^2 \right\}$$

using synthesized (x^*, b) obeying $b = Ax^* +$ white noise.

Review: ISTA and LISTA

ISTA (iterative soft thresholding)

$$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta} \left(x^{(k)} + \alpha A^T (b - Ax^{(k)}) \right).$$

 α, θ are chosen by hand or cross validation.

LISTA (Learned ISTA)

$$x^{(k+1)} = \mathsf{SoftThreshold}_{\theta^k} \left(W_1^k b + W_2^k x^{(k)} \right).$$

 θ^k, W_1^k, W_2^k are chosen by stochastic optimization

$$\underset{\{\theta^k, W_1^k, W_2^k\}}{\mathsf{minimize}} \left\{ \mathbb{E}_{x^\star, b} \| x^K(b) - x^\star \|^2 \right\}$$

using synthesized (x^{\star},b) obeying $b=Ax^{\star}+$ white noise.

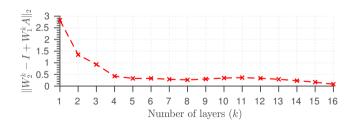
Compare: ISTA is slow, no training. LISTA is fast, difficult-to-train.

Proposed — coupled LISTA

LISTA-CP: couple W_1^k and W_2^k via

$$W_1^k A + W_2^k = I.$$

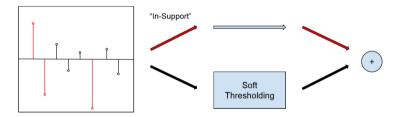
We show: $x^{(k)} \to x^*$ implies this relation to hold asymptotically.



Proposed — support selection

LISTA-CPSS: support selection

- Only the large coordinates pass activations to the next iteration.
- Ideas from Linearized Bregman iteration (kicking)¹ and Fixed-Point Continuation method (FPC)².



¹Stanley Osher et al. '2011

²Elaine Hale, Wotao Yin, Yin Zhang '2008

Robust global linear convergence

Theorem

Fix A, sparsity level s, and noise level σ .

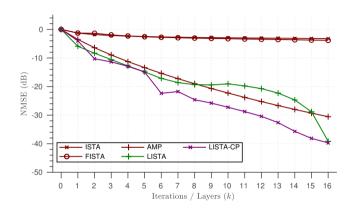
There exist $\{\theta^k, W_1^k\}$ such that LISTA-CP obeys

$$||x^{(k)} - x^*||_2 \le sC_1e^{-C_2k} + C_3\sigma, \quad k = 1, 2, \dots$$

where $C_1, C_2, C_3 > 0$ are constants.

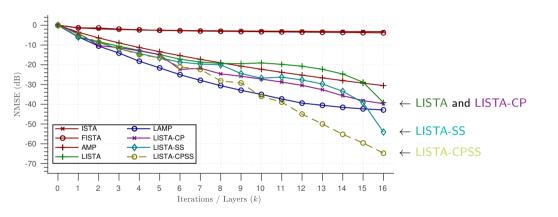
LISTA-CPSS improves the constants C_2, C_3 .

Weight coupling test



- CP can stabilize intermediate results.
- CP will not hurt final recovery performance.

Support selection test (no noise)



Thank you!

10:45 AM - 12:45 PM Room 210 & 230 AB #163

Welcome to our poster for more details!