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Distributed learning with mobile devices

Train a centralized model; data stays on mobile phones.
In each iteration...



Server sends model to clients...
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Clients send updates back...
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n: number of clients
ow.: gradient of the i-th client



Challenge |: uplink communication is expensive
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How to design the quantization?

e Convergence of SGD depends on the MSE of the estimated gradient.

e Sufficient to study:
bits vs. quantization error in distributed mean estimation.
o No compression (float): 32 bits per coordinate; 0 MSE.
o Binary quantization: 1 bit; O(d/n) MSE
o Variable length coding: O(1/n) MSE
o [Suresh et al., 17] [Alistarh et al., 17] [Wen et al., 17] [Bernstein et al., 18]



Challenge Il: user privacy is important

e Differential privacy (DP)
o Removing or changing single client’s data should not result in big
difference in the estimated mean

o Adding Gaussian noise [Abadi et al., 16]

Goal of this paper

e Both communication efficiency and differential privacy



Attempt 1: add Gaussian noise on the server
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e DP results readily available
o Assuming L2 norm of the gradient is bounded (gradient clipping).
e Server has to be trustworthy.




Attempt 2: add Gaussian noise on the client
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e After quantization: no communication efficiency.
e Before quantization: hard to analyze.




cpSGD: add binomial noise after quantization
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cpSGD

Maintains communication efficiency

o Binomial is discrete.
Differentially private

o Binomial similar to Gaussian.

o Extended to d-dimension with improved bound.
Works if server is negligent but not malicious
Works even if clients do not trust the server

o Secure aggregation.



For d variables and n = d clients, cpSGD uses
e O(log log(nd)) bits of communication per client per coordinate
e Constant privacy
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