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What makes adversarial examples a hard problem?

» This paper: perspective on sample complexity
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How do these two notions of generalization compare”?
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Optimization succeeds in both cases, but the model overfits on CIFAR-10.



Robust (Generalization

Main question: Does robust generalization require more data”



Robust Generalization

Main question: Does robust generalization require more data”

Theorem (informal): There is a natural distribution over
points in Rd with the following property:
Learning an /. -robust classifier for this distribution
requires V/d times more samples than learning a

non-robust classifier.
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Further results
e An alternative data model for MNIST
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* Sample complexity can be an obstacle for adv. robustness

* Need to improve priors encoded in models?

+ Many phenomena not yet understood theoretically | POSter #31
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