Towards Robust Detection of Adversarial Examples

Tianyu Pang, Chao Du, Yinpeng Dong and Jun Zhu

Department of Computer Science and Technology Tsinghua University

TSAIL

Adversarial Examples

From Dong et al. (CVPR 2018)

We Detect Adversarial Examples, and How?

Design new detectors:

- Kernel density detector (Feinman et al. 2017)
- LID detector (Ma et al. ICLR 2018)
- •

We Detect Adversarial Examples, and How?

Design new detectors:

- Kernel density detector (Feinman et al. 2017)
- LID detector (Ma et al. ICLR 2018)
- •

Train the models to better collaborate with existing detectors

Reverse Cross Entropy

Cross-Entropy (CE):

 1_{γ} : One-hot label

 $\{0, 0, 0, 1, 0, 0, 0, 0, 0, 0\}$

$$\mathcal{L}_{CE} = -1_y \cdot \log(F)$$

Reverse Cross-Entropy (RCE):

$$\{\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \mathbf{0}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}\}$$

$$\mathcal{L}_{RCE} = -R_y \cdot \log(F)$$

The RCE Training Method

Phase 1: Reverse Training

Training the model by minimizing the RCE loss

Phase 2: Reverse Logits

Negating the logits fed to the softmax layer to give predictions

Theoretical Analysis

Theorem 2. (Proof in Appendix A) Let (x, y) be a given training data. Under the L_{∞} -norm, if there is a training error $\alpha \ll \frac{1}{L}$ that $\|\mathbb{S}(Z_{pre}(x, \theta_R^*)) - R_y\|_{\infty} \leq \alpha$, then we have bounds

$$\left\| \mathbb{S}(-Z_{pre}(x, \theta_R^*)) - 1_y \right\|_{\infty} \le \alpha (L - 1)^2,$$

and $\forall j, k \neq y$,

$$|\mathbb{S}(-Z_{pre}(x,\theta_R^*))_j - \mathbb{S}(-Z_{pre}(x,\theta_R^*))_k| \le 2\alpha^2(L-1)^2.$$

Property 1: Consistent and Unbiased

When the training error $\alpha \rightarrow 0$, the prediction tends to the one-hot label

Property 2: Tighter Bound

The difference between any two non-maximal elements decreases as $O(\alpha^2)$

Experiments

t-SNE visualization of learned features on CIFAR-10

Experiments

Attack	Obj.	MNIST			CIFAR-10		
		Confidence	non-ME	K-density	Confidence	non-ME	K-density
FGSM	CE	79.7	66.8	98.8 (-)	71.5	66.9	99.7 (-)
	RCE	98.8	98.6	99.4 (*)	92.6	91.4	98.0 (*)
BIM	CE	88.9	70.5	90.0 (-)	0.0	64.6	100.0 (-)
	RCE	91.7	90.6	91.8 (*)	0.7	70.2	100.0 (*)
ILCM	CE	98.4	50.4	96.2 (-)	16.4	37.1	84.2 (-)
	RCE	100.0	97.0	98.6 (*)	64.1	77.8	93.9 (*)
JSMA	CE	98.6	60.1	97.7 (-)	99.2	27.3	85.8 (-)
	RCE	100.0	99.4	99.0 (*)	99.5	91.9	95.4 (*)
C&W	CE	98.6	64.1	99.4 (-)	99.5	50.2	95.3 (-)
	RCE	100.0	99.5	99.8 (*)	99.6	94.7	98.2 (*)
C&W-hc	CE	0.0	40.0	91.1 (-)	0.0	28.8	75.4 (-)
	RCE	0.1	93.4	99.6 (*)	0.2	53.6	91.8 (*)

AUC-scores (10^{-2}) on adversarial examples

For more results and analyses, please come

Poster: Room 210 & 230 AB #11

Code: https://github.com/P2333/RCE

