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Data-driven Clustering
• Clustering aims to divide a dataset into self-similar clusters.

• However, most clustering algorithms minimize a clustering cost function.

How do we choose the best algorithm for a specific application?

Can we automate this process?

• Goal: find some unknown natural clustering.

• Hope that low-cost clusterings recover the natural clusters.
• There are many algorithms and many objectives.
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Learning Model
• An unknown distribution ! over clustering instances.

• Find an algorithm " that produces clusterings similar to the target clusterings.

• Given a sample #$, … , #' ∼ ! annotated by their target clusterings.

• Want " to also work well for new instances from !!

• In this work:
1. Introduce large parametric family of clustering algorithms, (*, +)-Lloyds.
2. Efficient procedures for finding best parameters on a sample.
3. Generalization: optimal parameters on sample are nearly optimal on !.
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Initial Centers are Important!
• Lloyd’s method can get stuck if initial centers are chosen poorly
• Initialization is a well-studied problem with many proposed procedures (e.g., !-means++)
• Best method will depend on properties of the clustering instances.
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The (", $)-Lloyds Family
Initialization: Parameter "
• Use &'-sampling (generalizing &(-sampling of )-means++)

" = 0: random initialization " = 2: )-means++ " = ∞: farthest first

Local search: Second parameter $ tweaks the local search. Details in paper.

Question: For a distribution . over tasks, what parameters give best performance?

• Choose initial centers from dataset / randomly.
• Probability that point 0 ∈ / is center 23 is proportional to & 0, 24, … , 2364 '.
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Generalization Guarantee:

Experiments: Evaluate (", $)-Lloyds family on real and synthetic data.
CIFAR-10 MNIST Mixture of Gaussians CNAE-9

• Efficient algorithm for finding parameters on sample with best agreement to targets.
• “Algorithmically feasible to tune parameters on sample.”

• Analyze the intrinsic complexity of (", $)-Lloyds
• Show that need only roughly &' ( )*+ ,

-. clustering instances to ensure empirical cost for 
all parameters within / of expected cost.
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