The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal

Jiantao Jiao Berkeley EECS

Weihao Gao UIUC ECE

Yanjun Han Stanford EE

NIPS 2018, Montréal, Canada

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

Differential entropy of a continuous density on \mathbb{R}^d :

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

 machine learning tasks, e.g., classification, clustering, feature selection

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

- machine learning tasks, e.g., classification, clustering, feature selection
- causal inference

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

- machine learning tasks, e.g., classification, clustering, feature selection
- causal inference
- sociology

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

- machine learning tasks, e.g., classification, clustering, feature selection
- causal inference
- sociology
- computational biology

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

- machine learning tasks, e.g., classification, clustering, feature selection
- causal inference
- sociology
- computational biology
- **.** . . .

Differential entropy of a continuous density on \mathbb{R}^d :

$$h(f) = \int_{\mathbb{R}^d} f(x) \log \frac{1}{f(x)} dx$$

- machine learning tasks, e.g., classification, clustering, feature selection
- causal inference
- sociology
- computational biology
- **.** . . .

Our Task

Given empirical samples $X_1, \dots, X_n \sim f$, estimate h(f).

Notations:

- n: number of samples
- d: dimensionality
- k: number of nearest neighbors
- ▶ $R_{i,k}$: ℓ_2 distance of *i*-th sample to its *k*-th nearest neighbor
- \triangleright vol_d(r): volumn of the d-dimensional ball with radius r

Notations:

- n: number of samples
- d: dimensionality
- k: number of nearest neighbors
- ▶ $R_{i,k}$: ℓ_2 distance of *i*-th sample to its *k*-th nearest neighbor
- $ightharpoonup \text{vol}_d(r)$: volumn of the *d*-dimensional ball with radius r

Idea

$$h(f) = \mathbb{E}[-\log f(X)] \approx -\frac{1}{n} \sum_{i=1}^{n} \log f(X_i)$$
 $f(X_i) \cdot \operatorname{vol}_d(R_{i,k}) \approx \frac{k}{n}$

Notations:

- n: number of samples
- d: dimensionality
- k: number of nearest neighbors
- ▶ $R_{i,k}$: ℓ_2 distance of *i*-th sample to its *k*-th nearest neighbor
- $ightharpoonup \text{vol}_d(r)$: volumn of the *d*-dimensional ball with radius r

Idea

$$h(f) = \mathbb{E}[-\log f(X)] \approx -\frac{1}{n} \sum_{i=1}^{n} \log f(X_i)$$
 $f(X_i) \cdot \text{vol}_d(R_{i,k}) \approx \frac{k}{n}$

Definition (Kozachenko-Leonenko Estimator)

$$\hat{h}_{n,k}^{\mathsf{KL}} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{n}{k} \mathsf{vol}_d(R_{i,k}) \right) + \underbrace{\log(k) - \psi(k)}_{\mathsf{bias correction term}}$$

Definition (Kozachenko-Leonenko Estimator)

$$\hat{h}_{n,k}^{\mathsf{KL}} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{n}{k} \mathsf{vol}_d(R_{i,k}) \right) + \underbrace{\log(k) - \psi(k)}_{\mathsf{bias correction term}}$$

▶ Easy to implement: no numerical integration

Definition (Kozachenko-Leonenko Estimator)

$$\hat{h}_{n,k}^{\mathsf{KL}} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{n}{k} \mathsf{vol}_d(R_{i,k}) \right) + \underbrace{\log(k) - \psi(k)}_{\mathsf{bias correction term}}$$

- Easy to implement: no numerical integration
- Only tuning parameter: k

Definition (Kozachenko-Leonenko Estimator)

$$\hat{h}_{n,k}^{\mathsf{KL}} = \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{n}{k} \mathsf{vol}_d(R_{i,k}) \right) + \underbrace{\log(k) - \psi(k)}_{\mathsf{bias correction term}}$$

- Easy to implement: no numerical integration
- Only tuning parameter: k
- ► Good empirical performance without theoretical guarantee, especially when the density may be close to zero.

Main Result

Let \mathcal{H}_d^s be the class of probability densities supported on $[0,1]^d$ which are Hölder smooth with parameter $s \geq 0$.

Main Result

Let \mathcal{H}_d^s be the class of probability densities supported on $[0,1]^d$ which are Hölder smooth with parameter $s \geq 0$.

Theorem (Main Result)

For fixed k and $s \in (0, 2]$,

$$\left(\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}_{n,k}^{\mathsf{KL}}-h(f)\right)^2\right)^{\frac{1}{2}}\lesssim n^{-\frac{s}{s+d}}\log n+n^{-\frac{1}{2}}.$$

Main Result

Let \mathcal{H}_d^s be the class of probability densities supported on $[0,1]^d$ which are Hölder smooth with parameter $s \geq 0$.

Theorem (Main Result)

For fixed k and $s \in (0, 2]$,

$$\left(\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}_{n,k}^{\mathsf{KL}}-h(f)\right)^2\right)^{\frac{1}{2}}\lesssim n^{-\frac{s}{s+d}}\log n+n^{-\frac{1}{2}}.$$

First theoretical guarantee of Kozachenko–Leonenko estimator without assuming density bounded away from zero.

Theorem (Han-Jiao-Weissman-Wu'17)

For any $s \geq 0$,

$$\left(\inf_{\hat{h}}\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}-h(f)\right)^2\right)^{\frac{1}{2}}\gtrsim n^{-\frac{s}{s+d}}(\log n)^{-\frac{s+2d}{s+d}}+n^{-\frac{1}{2}}.$$

Theorem (Han-Jiao-Weissman-Wu'17)

For any $s \geq 0$,

$$\left(\inf_{\hat{h}}\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}-h(f)\right)^2\right)^{\frac{1}{2}}\gtrsim n^{-\frac{s}{s+d}}(\log n)^{-\frac{s+2d}{s+d}}+n^{-\frac{1}{2}}.$$

Take-home Message

Nearest neighbor estimator is nearly minimax

Theorem (Han-Jiao-Weissman-Wu'17)

For any $s \geq 0$,

$$\left(\inf_{\hat{h}}\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}-h(f)\right)^2\right)^{\frac{1}{2}}\gtrsim n^{-\frac{s}{s+d}}(\log n)^{-\frac{s+2d}{s+d}}+n^{-\frac{1}{2}}.$$

Take-home Message

- Nearest neighbor estimator is nearly minimax
- ► Nearest neighbor estimator adapts to the unknown smoothness *s*

Theorem (Han-Jiao-Weissman-Wu'17)

For any $s \geq 0$,

$$\left(\inf_{\hat{h}}\sup_{f\in\mathcal{H}_d^s}\mathbb{E}_f\left(\hat{h}-h(f)\right)^2\right)^{\frac{1}{2}}\gtrsim n^{-\frac{s}{s+d}}(\log n)^{-\frac{s+2d}{s+d}}+n^{-\frac{1}{2}}.$$

Take-home Message

- Nearest neighbor estimator is nearly minimax
- Nearest neighbor estimator adapts to the unknown smoothness s
- Maximal inequality plays a central role in dealing with small densities.