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Differential Entropy Estimation

Differential entropy of a continuous density on RY:

>

h(f) = /Rd f(x)log f(lx)dx

machine learning tasks, e.g., classification, clustering, feature
selection

causal inference
sociology

computational biology

> ...

Our Task

Given empirical samples X1, -+, X, ~ f, estimate h(f).
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Notations:

>

>

>

v

v

n: number of samples

d: dimensionality

k: number of nearest neighbors

Ri k: £> distance of i-th sample to its k-th nearest neighbor

volg(r): volumn of the d-dimensional ball with radius r
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Kozachenko—Leonenko Estimator

Definition (Kozachenko—Leonenko Estimator)

Z log < volg(R, )) + log(k) — (k)

bias correction term

> Easy to implement: no numerical integration
» Only tuning parameter: k

» Good empirical performance without theoretical guarantee,
especially when the density may be close to zero.
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Main Result

Let H3 be the class of probability densities supported on [0, 1]¢
which are Holder smooth with parameter s > 0.

Theorem (Main Result)

For fixed k and s € (0, 2],

N =

KL 2 __s _1
sup Ef (hnk—h(f)) <Sn sdlogn+n 2.
feHs, ’

First theoretical guarantee of Kozachenko—Leonenko estimator
without assuming density bounded away from zero.
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Matching Lower Bound

Theorem (Han-Jiao—Weissman-Wu'17)
For any s > 0,
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Matching Lower Bound

Theorem (Han-Jiao—Weissman-Wu'17)

For any s > 0,
. ~ 2 2 __s_ _ s+2d _1
|r]f sup Ef <h— h(f)) 2 n s+d(|og n) std 4+ n 2.
h feH;

Take-home Message

» Nearest neighbor estimator is nearly minimax

» Nearest neighbor estimator adapts to the unknown
smoothness s

» Maximal inequality plays a central role in dealing with small
densities.



