Blind Deconvolutional Phase Retrieval via Convex Programming

Ali Ahmed, Alireza Aghasi, Paul Hand

INFORMATION TECHNOLOGY UNIVERSITY

Funding provided in part by the National Science Foundation

December 5, 2018

Ahmed, Aghasi, Hand

Blind Deconvolutional Phase Retrieval

December 5, 2018 1 / 7

Motivation: Blind Deconvolutional Phase Retrieval

Observe:	$\hat{m{y}} = m{F}(m{w} \circledast m{x}) ^2$
Find:	$oldsymbol{x} \in \mathbb{R}^L, oldsymbol{w} \in \mathbb{R}^L$

Assumption: $\boldsymbol{w} = \boldsymbol{B}\boldsymbol{h}, \ \boldsymbol{x} = \boldsymbol{C}\boldsymbol{m},$ $\boldsymbol{B} \in \mathbb{R}^{L \times K}, \ \boldsymbol{C} \in \mathbb{R}^{L \times N}$

Blind Deconvolutional Phase Retrieval (BDPR): Lifting

Observe:
$$\hat{y}[\ell] = |\boldsymbol{b}_{\ell}^* \boldsymbol{h}|^2 \cdot |\boldsymbol{c}_{\ell}^* \boldsymbol{m}|^2$$
 \boldsymbol{b}_{ℓ}^* is ℓ th row of \boldsymbol{FB} \boldsymbol{c}_{ℓ}^* is ℓ th row of \boldsymbol{FC} Find: $\boldsymbol{h} \in \mathbb{R}^K, \boldsymbol{m} \in \mathbb{R}^N$

Solve:
$$\begin{aligned} \min_{\boldsymbol{h},\boldsymbol{m}} &\|\boldsymbol{h}\|^2 + \|\boldsymbol{m}\|^2 \\ &\text{subject to } \langle \boldsymbol{b}_{\ell} \boldsymbol{b}_{\ell}^*, \boldsymbol{X}_1 \rangle \langle \boldsymbol{c}_{\ell} \boldsymbol{c}_{\ell}^*, \boldsymbol{X}_2 \rangle = \hat{y}[\ell] \\ & \boldsymbol{X}_1 = \boldsymbol{h} \boldsymbol{h}^*, \boldsymbol{X}_2 = \boldsymbol{m} \boldsymbol{m}^* \end{aligned}$$

Ahmed, Aghasi, Hand

Novel Convex Relaxation via BranchHull

Hyperbolic constraint set

Cartoon of the BranchHull Geometry

Blue: PSD Cone, Red: Boundary of Hyperbolic Constraint

Point in intersection with smallest trace lives along the ridge where hyperbolic constraints are satisfied with equalities. • Convex program for Blind Deconvolutional Phase Retrieval

$$\begin{array}{l} \underset{\boldsymbol{X}_{1},\boldsymbol{X}_{2}}{\text{minimize trace}(\boldsymbol{X}_{1}) + \text{trace}(\boldsymbol{X}_{2})}\\ \text{subject to } \langle \boldsymbol{b}_{\ell} \boldsymbol{b}_{\ell}^{*}, \boldsymbol{X}_{1} \rangle \langle \boldsymbol{c}_{\ell} \boldsymbol{c}_{\ell}^{*}, \boldsymbol{X}_{2} \rangle \geq \hat{y}[\ell]\\ \boldsymbol{X}_{1} \succcurlyeq \boldsymbol{0}, \boldsymbol{X}_{2} \succcurlyeq \boldsymbol{0}. \end{array}$$

Theorem [Ahmed, Aghasi, Hand]: Choose B and C to have i.i.d. standard normal entries. Then, h ∈ ℝ^K and m ∈ ℝ^N can be exactly recovered (up to global rescaling) with high probability if L ≥ (K + N) log² L.

Phase Portrait for an ADMM Implementation

Convex BDPR succeeds for reasonable constants in sample complexity.

Blind Deconvolutional Phase Retrieval via Convex Programming

Ali Ahmed, Alireza Aghasi, Paul Hand

INFORMATION TECHNOLOGY UNIVERSITY

Funding provided in part by the National Science Foundation

December 5, 2018

Ahmed, Aghasi, Hand

Blind Deconvolutional Phase Retrieval

December 5, 2018 1 / 7