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Motivation: Blind Deconvolutional Phase Retrieval
18

Figure 12. Sparsity based sub-wavelength CDI. A 2D object consisting of an arrangement of nano-holes (100nm in diameter) is illuminated by a 532nm
laser, and the Fourier plane magnitude is measured. High spatial frequencies are lost during propagation, because the features (the circles as well as their
separation) are smaller than ⇠ �/2. Using an iterative greedy algorithm, and exploiting the prior knowledge that the object is sparse in a dictionary made of
100nm circles, the phase is retrieved and the object is recovered from its low-pass-filtered Fourier magnitude [48].

VI. OTHER PHYSICAL SETTINGS, BOTTLENECKS, AND

VISION

This review article focused mainly on the simplest physical
setting for phase retrieval in optical imaging (Fig. 2), CDI:
where an unknown 2D optical image is recovered algorith-
mically from a single measurement of its far-field intensity
pattern, given a known image support (or other prior informa-
tion). In terms of signal processing, this problem corresponds
to recovering a 2D object from measurements of its Fourier
magnitude. However, the issue of phase retrieval in optical
imaging, and in a more general sense – in optics, is far broader,
and includes other physical settings which naturally translate
into signal processing problems different than the standard
phase retrieval problem. This section provides a short overview
of those physical settings, defines the various problems in
terms of signal processing, and provides some key references.
We conclude with a discussion on the main challenges and
bottlenecks of phase retrieval in optical imaging, followed by
an outlook for the upcoming years and long term vision.

A. Non-Fourier Measurements

The simplest optical phase retrieval problem assumes that
the measured data corresponds to the Fourier magnitude. In
optical settings, this means that the measurements are taken

in the Fourier domain of the sought image, which physically
means performing the measurements at a plane sufficiently
far away from the image plane (the so-called far-field or the
Fraunhofer regime), or at the focal plane of an ideal lens
[40]. In reality, however, the measurements can be taken at
any plane between the image plane and the far field, which
would yield intensity patterns that are very different than the
Fourier magnitude of the sought signal. This of course implies
that new (or revised) algorithms - beyond those described in
previous sections - must be used, which naturally raises issues
of conditions for uniqueness and convergence. At the same
time, these measurements have some interesting advantages,
which can be used wisely to improve the performance of
phase retrieval. Let us begin by describing the relevant physical
settings.

As stated earlier in this paper, the optical Fourier plane
corresponds to a plane sufficiently far away from where the
object (the sought signal) is positioned. Far away here means
asymptotically at infinite distance from the object plane, or at
the focal plane of a lens. However, the entire propagation-
evolution of electromagnetic waves from any plane to any
other plane (not only from the near field to the far field)
is known: it is fully described by Maxwell’s equations. As
such, one can formulate the problem through a proper transfer
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Free Space Propagation

Inverse 
Problem

measurements
recovered

Observe: ŷ = |F (w ~ x)|2

Find: x ∈ RL,w ∈ RL

Assumption: w = Bh, x = Cm,

B ∈ RL×K , C ∈ RL×N
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Blind Deconvolutional Phase Retrieval (BDPR): Lifting

Observe: ŷ [`] = |b∗
`h|2 · |c∗

`m|2

b∗
` is `th row of FB

c∗
` is `th row of FC

Find: h ∈ RK ,m ∈ RN

Solve: minimize
h,m

‖h‖2 + ‖m‖2

subject to 〈b`b∗
` ,X 1〉〈c`c∗

` ,X 2〉 = ŷ [`]

X 1 = hh∗,X 2 = mm∗
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Novel Convex Relaxation via BranchHull

minimize
X 1,X 2

trace(X 1) + trace(X 2)

subject to 〈b`b∗
` ,X 1〉〈c`c∗

` ,X 2〉 = ŷ [`]

X 1 < 0,X 2 < 0

Hyperbolic constraint set
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Cartoon of the BranchHull Geometry

Blue: PSD Cone, Red: Boundary of Hyperbolic Constraint

Point in intersection with smallest trace lives along the ridge
where hyperbolic constraints are satisfied with equalities.
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Main Result: Exact Recovery

Convex program for Blind Deconvolutional Phase Retrieval

minimize
X 1,X 2

trace(X 1) + trace(X 2)

subject to 〈b`b∗
` ,X 1〉〈c`c∗

` ,X 2〉 ≥ ŷ [`]

X 1 < 0,X 2 < 0.

Theorem [Ahmed, Aghasi, Hand]: Choose B and C to have i.i.d. standard
normal entries. Then, h ∈ RK and m ∈ RN can be exactly recovered (up to
global rescaling) with high probability if L & (K + N) log2 L.
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Phase Portrait for an ADMM Implementation

Phase Portrait

Phase transition:

N + K

L

Figure: A phase portrait highlighting the frequency of successful recoveries
of the proposed convex program.

N + K = 2.5L log�2 L
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N + K

L

Convex BDPR succeeds for reasonable constants in sample complexity.
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Successful Recovery

Unsuccessful Recovery
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