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Nonconvex Optimization.

» Gradient Descent (GD) — stationary points: local max, saddle points, local min.
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Nonconvex Optimization.

» Gradient Descent (GD) — stationary points: local max, saddle points, local min.
» Perturbed GD [Jin et al. 2017] efficiently escapes local max and saddle points.

» How to deal with spurious local min?
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Local Minima

In general, finding global minima is NP-hard.
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Local Minima

In general, finding global minima is NP-hard.
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Avoiding “shallow” local minima

Goal: finds approximate local minima of smooth nonconvex function F, given only
access to an errorneous version f where sup, |F(x) — f(x)| < v

3/6 Chi Jin On the Local Minima of the Empirical Risk



Application

Statistical Learning.

Minimize population risk R while only have access to emprical risk R,.

R(0) = Ez~p[L(6; 2)], Rn(0) = % Z L(6;z;).
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Application

Statistical Learning.

Minimize population risk R while only have access to emprical risk R,.
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Unifrom convergence guarantees supy |R(0) — R,(0)| < O(1/+/n).

Chi Jin On the Local Minima of the Empirical Risk



Goal: find e-approximate local minima of F in
polynomial time.

Central Questions:

1. What algorithm can achieve this?

2. How much error v can be tolerated?

Y
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Zhang et al. [2017]: Stochastic Gradient Langevin Dynamics (SGLD) if v < ¢?/d®.
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Goal: find e-approximate local minima of F in
polynomial time.

Central Questions:

1. What algorithm can achieve this?

2. How much error v can be tolerated?

Y

Zhang et al. [2017]: Stochastic Gradient Langevin Dynamics (SGLD) if v < ¢?/d®.

This Work: Perturbed SGD on a “smoothed” version of f if v < e'>/d.
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Almost Sharp Gu tees

Is there better polynomial time algorithms that tolerate larger error?
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Almost Sharp Gu tees

Is there better polynomial time algorithms that tolerate larger error? No!

Lxponential queries algorithm (Thm. 8)

SGD (Thm. 7)

SGLD (Zhang et al., 201

v

Complete characterization of error v vs accuracy € and dimension d.
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Is there better polynomial time algorithms that tolerate larger error? No!

Lxponential queries algorithm (Thm. 8)
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SGLD (Zhang et al., 201
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Complete characterization of error v vs accuracy € and dimension d.
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