CIEES:

A Tsinghua University

A Simple Proximal Stochastic Gradient Method for

Nonsmooth Nonconvex Optimization

Zhize LI, Jian Li

11IS, Tsinghua University
https://zhizeli.github.io/

Dec 6th, NeurlPS 2018



Problem Definition

Machine learning problems, such as image classification or voice recognition,
are usually modeled as a (nonconvex) optimization problem:

m@in L(O).

Goal: find a good enough solution (parameters) 8, e.g., |IVL(8)||? < €



Problem Definition

We consider the more general nonsmooth nonconvex case:
n
1
min, @(x): = f(x) + h(x) = ;Z £i(x) + h(x),
=1

Where f(x) and all f;(x) are possibly nonconvex (loss on data samples),

and h(x) is nonsmooth but convex (e.g., I, regularizer |[x||[;or indicator
function I-(x) for some convex set C).
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Where f(x) and all f;(x) are possibly nonconvex (loss on data samples),

and h(x) is nonsmooth but convex (e.g., I, regularizer |[x||[;or indicator
function I-(x) for some convex set C).

Benefit of h(x): try to deal with the nonsmooth and constrained problems.
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Our Results

We propose a simple ProxSVRG+ algorithm, which recovers/improves
several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).
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Our Results

We propose a simple ProxSVRG+ algorithm, which recovers/improves
several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Benefits: simpler algorithm, simpler analysis, better theoretical results,
more attractive In practice (prefers moderate minibatch size, auto-adapt

to local curvature, 1.e., auto-switch to faster linear convergence o(-log1/¢)
In that regions although the objective function is generally nonconvex).
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Theoretical Results
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Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b
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Our ProxSVRG+
prefers moderate
minibatch size (red box)
which is not too small
for parallelism or
vectorization and not
too large for better
generalization,
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Experimental Results
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Figure 2: Performance of different algorithms under best minibatch size b

Our ProxSVRG+ prefers much smaller minibatch size than ProxSVRG [Reddi et al., 2016],
and performs much better than ProxGD and ProxSGD [Ghadimi et al., 2016].
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Thanks!
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