

A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization

Zhize Li, Jian Li

IIIS, Tsinghua University https://zhizeli.github.io/

Dec 6th, NeurIPS 2018

Problem Definition

Machine learning problems, such as image classification or voice recognition, are usually modeled as a (nonconvex) optimization problem:

 $\min_{\theta} L(\theta).$

Goal: find a good enough solution (parameters) $\hat{\theta}$, e.g., $\|\nabla L(\hat{\theta})\|^2 \leq \epsilon$

Problem Definition

We consider the more general **nonsmooth nonconvex** case:

$$\min_{x} \Phi(x) := f(x) + h(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x),$$

Where f(x) and all $f_i(x)$ are possibly nonconvex (loss on data samples), and h(x) is nonsmooth but convex (e.g., l_1 regularizer $||x||_1$ or indicator function $I_C(x)$ for some convex set C).

Problem Definition

We consider the more general **nonsmooth nonconvex** case:

$$\min_{x} \Phi(x) := f(x) + h(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) + h(x),$$

Where f(x) and all $f_i(x)$ are possibly nonconvex (loss on data samples), and h(x) is nonsmooth but convex (e.g., l_1 regularizer $||x||_1$ or indicator function $I_C(x)$ for some convex set C).

Benefit of h(x): try to deal with the nonsmooth and constrained problems.

Our Results

We propose a simple **ProxSVRG**+ algorithm, which **recovers/improves** several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Our Results

We propose a simple **ProxSVRG**+ algorithm, which **recovers/improves** several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Benefits: simpler algorithm, simpler analysis, better theoretical results,

Our Results

We propose a simple **ProxSVRG**+ algorithm, which **recovers/improves** several previous results (e.g., ProxGD, ProxSVRG/SAGA, SCSG).

Benefits: simpler algorithm, simpler analysis, better theoretical results, more attractive in practice (prefers moderate minibatch size, auto-adapt to local curvature, i.e., auto-switch to faster linear convergence $O(\cdot \log 1/\epsilon)$ in that regions although the objective function is generally nonconvex).

Theoretical Results

Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization,

Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b

Theoretical Results

Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization, and uses less PO calls than ProxSVRG.

Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b

Theoretical Results

Figure 1: Stochastic first-order oracle (SFO) and proximal oracle (PO) complexity wrt. minibatch size b

Our ProxSVRG+ prefers moderate minibatch size (red box) which is not too small for parallelism or vectorization and not too large for better generalization, and uses less PO calls than ProxSVRG.

Recently, [Zhou et al., 2018] and [Fang et al., 2018] improve the SFO to $O(n^{1/2}/\epsilon)$ in the smooth setting.

Experimental Results

Figure 2: Performance of different algorithms under best minibatch size b

Our ProxSVRG+ prefers much smaller minibatch size than ProxSVRG [Reddi et al., 2016], and performs much better than ProxGD and ProxSGD [Ghadimi et al., 2016].

Thanks!

Our Poster: 5:00-7:00 PM Room 210 #5