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Spectral Optimization

 For a scalar function f : R — R and matrix A € R4*4  spectral-sum is defined as :

A1, A2, ..., Aq : eigenvalues of A



Spectral Optimization

 For a scalar function f : R — R and matrix A € R%*¢  spectral-sum is defined as :

d
Np(d) =) f(\) = tr(f(4)),
1=1

A1, A2, ..., Aq : eigenvalues of A
/ o If f(z)= log:c it is the log-determinant \

o If f(z)=a"", it is the trace of inverse

o If f(x) = 2P, it is the Schatten-p norm (the nuclear norm is the case p = 1)

o if f(x)=1x ogzc it 1s the von-Neumann entropy

o If f(z)=ex , it is the Estrada index

o If f(x)= { it >0 , 1t is rank or testing positive definiteness

0 otherwise’ /




Spectral Optimization

 For a scalar function f : R — R and matrix A € R%*¢  spectral-sum is defined as :

A1, A2, ..., Aq : eigenvalues of A

* (Goal : solve the optimization

min X (A(0)) + 9(0)
&~ €asy to compute g, Vg

A(0) is a parameterized symmetric matrix, g is a simple function.

* E.g., collaborative filtering, hyperparameter learning and etc.



Challenges

e (Gradient-based methods:

0 < 0 —nVa (Xs(A(0)) + g(0))

easy to compute

- Computing exact VX ¢(A(8)) requires O(d®) operations, d :matrix dimension
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- Computing exact VX ¢(A(8)) requires O(d®) operations, d :matrix dimension

« [Hanetal., 2017, Dong et al., 2017] can approximate Vg2 ¢(A(8)) using O(||A|lo) @
« But, the gradient estimator is biased, which hurts stable/fast convergence of SGD @

SGD: stochastic gradient descent



Challenges

e (Gradient-based methods:

0 < 0 —nVa (Xs(A(0)) + g(0))

easy to compute

- Computing exact VX ¢(A(8)) requires O(d®) operations, d :matrix dimension

« [Hanetal., 2017, Dong et al., 2017] can approximate Vg2 ¢(A(8)) using O(||A|lo) @
« But, the gradient estimator is biased, which hurts stable/fast convergence of SGD @

 We propose a fast unbiased gradient estimator with convergence guarantees of
SGD/SVRG

SVRG: stochastic variance reduced gradient, SGD: stochastic gradient descent



Randomized Chebyshev Expansion

« Why biased? The prior spectral-sum approximations are biased on combining
(1) randomized trace estimator (unbiased)
(2) Chebyshev polynomial expansion of f ~ p,, (biased) @
YXr(AB)) =tr(f(A)) =E, v f(A)WV] = Ey[v' pn(A)v] (v:random vector)

Unbiased biased estimator



Randomized Chebyshev Expansion

« Why biased? The prior spectral-sum approximations are biased on combining
(1) randomized trace estimator (unbiased)
(2) Chebyshev polynomial expansion of f ~ p,, (biased) @

YXr(AB)) =tr(f(A)) =E, [VTf(A)V] ~ By [VTpn(A)V] ( v:random vector)

Unbiased biased estimator

« To make it unbiased, we consider the following randomized Chebyshev expansions

4 o n )
B n ~ gn o~ B CLJ

f0) = @), mle) = o)~ ) = 3 e o

\_ J=0 sampling 1= 0 v y

« Then, E,, [pn(x)]

= f(x) and the gradient estimator with p,, is unbiased @



Randomized Chebyshev Expansion

« Why biased? The prior spectral-sum approximations are biased on combining
(1) randomized trace estimator (unbiased)
(2) Chebyshev polynomial expansion of f ~ p,, (biased) @

YXr(AB)) =tr(f(A)) =E, [VTf(A)V] ~ By [VTpn(A)V] ( v:random vector)

Unbiased biased estimator

« To make it unbiased, we consider the following randomized Chebyshev expansions

4 oo n n N
n ~ d4n ~ a;

fz) = Z a;T;(z), pn(z)= Za,jcrj(:c) ———— Pu(@) = Z Zj - T, ()

S 7=0 7=0 sampling =0 = )

« Then, E,, [p,.(2)] = f(z) and the gradient estimator with p,, is unbiased @

* (Question : what is a good distribution ¢, ?




Optimal Degree Distribution

* An estimator with small variance leads to faster convergence.
* Problem : minimize the variance of estimator given the expected degree N

min Var,, [p,] st. E,ln]=N
dn
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* An estimator with small variance leads to faster convergence.
« Problem : minimize the variance of estimator given the expected degree N

min Var,, [p,] st. E,ln]=N
dn

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is
0 for n <N —k p > 1: defined by f

* = 1 — k — 1 —1 f = N - k
qy = < (p )p or n k = min{ N, {%J}
k(p—1)2p~ D) for n> N —k g




Optimal Degree Distribution

* An estimator with small variance leads to faster convergence.
« Problem : minimize the variance of estimator given the expected degree N

min Var,, [p,] st. E,ln]=N
dn

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is

" for < N-=F 0> 1: defined by f
¢:={1-k(p-1p ' for n=N—k
k(p—1)2p~ D) for n> N —k

k = mm{N{ 1J}

« Under the optimal distribution, we prove the convergence guarantees of SGD/SVRG

Theorem 2 [Han, Avron and Shin 2018].

) 0(1) ) 6* : optimal
E[|[g* —67)|3] < o7 — 0113 9(T) . 0 in Tt iteration of SGD



Experimental Results for Two Applications

1. Matrix completion via nuclear norm regularization (left)
2. (Gaussian process regression via log-determinant optimization (right)
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Our algorithms run at least 6 times faster than other gradient descent methods
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