

## Stochastic Chebyshev Gradient Descent for Spectral Optimization

**Insu Han**<sup>1</sup> Haim Avron<sup>2</sup> Jinwoo Shin<sup>1</sup>

<sup>1</sup>Korea Advanced Institute of Science and Tenology (KAIST) <sup>2</sup>Tel Aviv University

NeurIPS 2018 Motréal

#### **Spectral Optimization**

• For a scalar function  $f:\mathbb{R} o\mathbb{R}$  and matrix  $A\in\mathbb{R}^{d imes d}$  , <code>spectral-sum</code> is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$  : eigenvalues of A

### **Spectral Optimization**

• For a scalar function  $f:\mathbb{R} o\mathbb{R}$  and matrix  $A\in\mathbb{R}^{d imes d}$  , spectral-sum is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$ : eigenvalues of A

- If  $f(x) = \log x$ , it is the log-determinant
- If  $f(x) = x^{-1}$ , it is the trace of inverse
- If  $f(x) = x^p$ , it is the Schatten-p norm (the nuclear norm is the case p = 1)
- if  $f(x) = x \log x$ , it is the von-Neumann entropy
- If  $f(x) = \exp(x)$ , it is the Estrada index
- If  $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ , it is rank or testing positive definiteness

### **Spectral Optimization**

• For a scalar function  $f:\mathbb{R} \to \mathbb{R}$  and matrix  $A \in \mathbb{R}^{d \times d}$  , spectral-sum is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$ : eigenvalues of A

Goal: solve the optimization

$$\min_{\theta} \Sigma_f(A(\theta)) + g(\theta)$$

 $\sigma$  easy to compute g,  $\nabla g$ 

 $A(\theta)$  is a parameterized symmetric matrix, g is a simple function.

• E.g., collaborative filtering, hyperparameter learning and etc.

#### Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left( \underline{\Sigma_f(A(\theta))} + g(\theta) \right)$$
 easy to compute

• Computing exact  $\nabla_{\theta} \Sigma_f(A(\theta))$  requires  $\mathcal{O}(d^3)$  operations, d:matrix dimension

#### Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left( \Sigma_f(A(\theta)) + g(\theta) \right)$$

- Computing exact  $\nabla_{\theta} \Sigma_f(A(\theta))$  requires  $\mathcal{O}(d^3)$  operations, d: matrix dimension
- [Han et al., 2017, Dong et al., 2017] can approximate  $\nabla_{\theta} \Sigma_f(A(\theta))$  using  $\mathcal{O}(\|A\|_0)$



But, the gradient estimator is biased, which hurts stable/fast convergence of SGD 😭



#### Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left( \underline{\Sigma_f(A(\theta))} + \underline{g(\theta)} \right)$$
 easy to compute

- Computing exact  $\nabla_{\theta} \Sigma_f(A(\theta))$  requires  $\mathcal{O}(d^3)$  operations, d: matrix dimension
- [Han et al., 2017, Dong et al., 2017] can approximate  $\nabla_{\theta} \Sigma_f(A(\theta))$  using  $\mathcal{O}(\|A\|_0)$



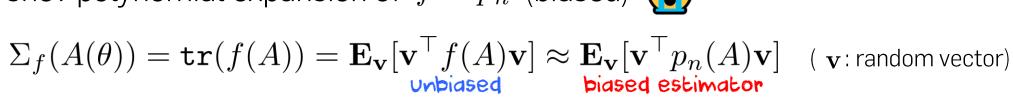
But, the gradient estimator is biased, which hurts stable/fast convergence of SGD 😭



We propose a fast unbiased gradient estimator with convergence guarantees of SGD/SVRG

#### Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
  - (1) randomized trace estimator (unbiased)
  - (2) Chebyshev polynomial expansion of  $f \approx p_n$  (biased)



#### Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
  - (1) randomized trace estimator (unbiased)
  - (2) Chebyshev polynomial expansion of  $f \approx p_n$  (biased)



$$\Sigma_f(A(\theta)) = \mathbf{tr}(f(A)) = \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top f(A)\mathbf{v}] \approx \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top p_n(A)\mathbf{v}] \quad \text{($\mathbf{v}$: random vector)}$$

To make it unbiased, we consider the following randomized Chebyshev expansions

$$\left(f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^n a_j T_j(x) \xrightarrow{\begin{array}{c} n \sim q_n \\ \text{ random} \\ \text{ sampling} \end{array}} \widehat{p}_n(x) = \sum_{j=0}^n \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x) \right)$$

• Then,  $\mathbf{E}_n\left[\widehat{p}_n(x)\right] = f(x)$  and the gradient estimator with  $\widehat{p}_n$  is unbiased  $(\mathbf{c})$ 



#### Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
  - (1) randomized trace estimator (unbiased)
  - (2) Chebyshev polynomial expansion of  $f \approx p_n$  (biased)



$$\Sigma_f(A(\theta)) = \mathbf{tr}(f(A)) = \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top f(A)\mathbf{v}] \approx \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top p_n(A)\mathbf{v}] \quad \text{($\mathbf{v}$: random vector)}$$

To make it unbiased, we consider the following randomized Chebyshev expansions

$$\left( f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^n a_j T_j(x) \xrightarrow{\text{random sampling}} \widehat{p}_n(x) = \sum_{j=0}^n \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x) \right)$$

• Then,  $\mathbf{E}_n\left[\widehat{p}_n(x)\right] = f(x)$  and the gradient estimator with  $\widehat{p}_n$  is unbiased  $(\mathbf{c})$ 



Question: what is a good distribution  $q_n$ ?

#### **Optimal Degree Distribution**

- An estimator with small variance leads to faster convergence.
- ullet Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t.  $\mathbf{E}_n[n] = N$ 

#### **Optimal Degree Distribution**

- An estimator with small variance leads to faster convergence.
- Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t.  $\mathbf{E}_n[n] = N$ 

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is

$$q_n^* = \begin{cases} 0 & \text{for } n < N - k \\ 1 - k (\rho - 1)\rho^{-1} & \text{for } n = N - k \\ k(\rho - 1)^2 \rho^{-(n+1)} & \text{for } n > N - k \end{cases} \qquad \rho > 1 : \text{defined by } f$$

$$k = \min\{N, \left\lfloor \frac{\rho}{\rho - 1} \right\rfloor\}$$

#### Optimal Degree Distribution

- An estimator with small variance leads to faster convergence.
- Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t.  $\mathbf{E}_n[n] = N$ 

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is

$$q_n^* = \begin{cases} 0 & \text{for } n < N - k \\ 1 - k (\rho - 1)\rho^{-1} & \text{for } n = N - k \\ k(\rho - 1)^2 \rho^{-(n+1)} & \text{for } n > N - k \end{cases} \qquad \rho > 1 : \text{defined by } f$$

$$k = \min\{N, \left\lfloor \frac{\rho}{\rho - 1} \right\rfloor\}$$

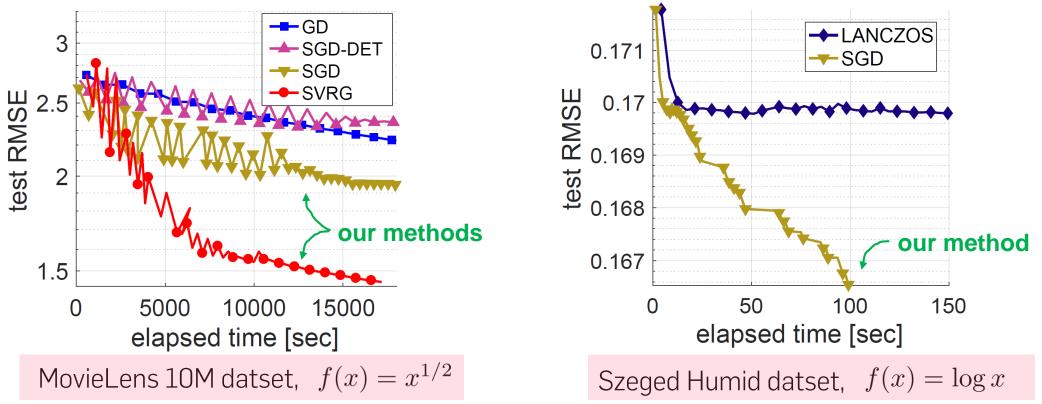
Under the optimal distribution, we prove the convergence guarantees of SGD/SVRG

#### Theorem 2 [Han, Avron and Shin 2018].

$$\mathbf{E}[\|\theta^* - \theta^{(T)}\|_2^2] \le \frac{\mathcal{O}(1)}{T} \|\theta^* - \theta^{(0)}\|_2^2 \qquad \qquad \frac{\theta^* : \text{optimal}}{\theta^{(T)} : \theta \text{ in } \mathbf{T}^{th} \text{ iteration of SGD}}$$

#### **Experimental Results for Two Applications**

- 1. Matrix completion via **nuclear norm** regularization (left)
- 2. Gaussian process regression via log-determinant optimization (right)



Our algorithms run at least 6 times faster than other gradient descent methods

#### Thank you

## Stochastic Chebyshev Gradient Descent for Spectral Optimization

Key words: Matrix optimization, Randomized Chebyshev truncation, Variance minimization

# Poster # 6 Thurday Dec 6<sup>th</sup> 5:00 – 7:00 PM @ Room 210 & 230 AB