

Stochastic Chebyshev Gradient Descent for Spectral Optimization

Insu Han¹ Haim Avron² Jinwoo Shin¹

¹Korea Advanced Institute of Science and Tenology (KAIST) ²Tel Aviv University

NeurIPS 2018 Motréal

Spectral Optimization

• For a scalar function $f:\mathbb{R} o\mathbb{R}$ and matrix $A\in\mathbb{R}^{d imes d}$, <code>spectral-sum</code> is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$: eigenvalues of A

Spectral Optimization

• For a scalar function $f:\mathbb{R} o\mathbb{R}$ and matrix $A\in\mathbb{R}^{d imes d}$, spectral-sum is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$: eigenvalues of A

- If $f(x) = \log x$, it is the log-determinant
- If $f(x) = x^{-1}$, it is the trace of inverse
- If $f(x) = x^p$, it is the Schatten-p norm (the nuclear norm is the case p = 1)
- if $f(x) = x \log x$, it is the von-Neumann entropy
- If $f(x) = \exp(x)$, it is the Estrada index
- If $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$, it is rank or testing positive definiteness

Spectral Optimization

• For a scalar function $f:\mathbb{R} \to \mathbb{R}$ and matrix $A \in \mathbb{R}^{d \times d}$, spectral-sum is defined as :

$$\Sigma_f(A) := \sum_{i=1}^d f(\lambda_i) = \operatorname{tr}(f(A)),$$

 $\lambda_1, \lambda_2, \dots, \lambda_d$: eigenvalues of A

Goal: solve the optimization

$$\min_{\theta} \Sigma_f(A(\theta)) + g(\theta)$$

 σ easy to compute g, ∇g

 $A(\theta)$ is a parameterized symmetric matrix, g is a simple function.

• E.g., collaborative filtering, hyperparameter learning and etc.

Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left(\underline{\Sigma_f(A(\theta))} + g(\theta) \right)$$
 easy to compute

• Computing exact $\nabla_{\theta} \Sigma_f(A(\theta))$ requires $\mathcal{O}(d^3)$ operations, d:matrix dimension

Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left(\Sigma_f(A(\theta)) + g(\theta) \right)$$

- Computing exact $\nabla_{\theta} \Sigma_f(A(\theta))$ requires $\mathcal{O}(d^3)$ operations, d: matrix dimension
- [Han et al., 2017, Dong et al., 2017] can approximate $\nabla_{\theta} \Sigma_f(A(\theta))$ using $\mathcal{O}(\|A\|_0)$

But, the gradient estimator is biased, which hurts stable/fast convergence of SGD 😭

Challenges

Gradient-based methods:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \left(\underline{\Sigma_f(A(\theta))} + \underline{g(\theta)} \right)$$
 easy to compute

- Computing exact $\nabla_{\theta} \Sigma_f(A(\theta))$ requires $\mathcal{O}(d^3)$ operations, d: matrix dimension
- [Han et al., 2017, Dong et al., 2017] can approximate $\nabla_{\theta} \Sigma_f(A(\theta))$ using $\mathcal{O}(\|A\|_0)$

But, the gradient estimator is biased, which hurts stable/fast convergence of SGD 😭

We propose a fast unbiased gradient estimator with convergence guarantees of SGD/SVRG

Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
 - (1) randomized trace estimator (unbiased)
 - (2) Chebyshev polynomial expansion of $f \approx p_n$ (biased)

Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
 - (1) randomized trace estimator (unbiased)
 - (2) Chebyshev polynomial expansion of $f \approx p_n$ (biased)

$$\Sigma_f(A(\theta)) = \mathbf{tr}(f(A)) = \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top f(A)\mathbf{v}] \approx \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top p_n(A)\mathbf{v}] \quad \text{(\mathbf{v}: random vector)}$$

To make it unbiased, we consider the following randomized Chebyshev expansions

$$\left(f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^n a_j T_j(x) \xrightarrow{\begin{array}{c} n \sim q_n \\ \text{ random} \\ \text{ sampling} \end{array}} \widehat{p}_n(x) = \sum_{j=0}^n \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x) \right)$$

• Then, $\mathbf{E}_n\left[\widehat{p}_n(x)\right] = f(x)$ and the gradient estimator with \widehat{p}_n is unbiased (\mathbf{c})

Randomized Chebyshev Expansion

- Why biased? The prior spectral-sum approximations are biased on combining
 - (1) randomized trace estimator (unbiased)
 - (2) Chebyshev polynomial expansion of $f \approx p_n$ (biased)

$$\Sigma_f(A(\theta)) = \mathbf{tr}(f(A)) = \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top f(A)\mathbf{v}] \approx \mathbf{E}_{\mathbf{v}}[\mathbf{v}^\top p_n(A)\mathbf{v}] \quad \text{(\mathbf{v}: random vector)}$$

To make it unbiased, we consider the following randomized Chebyshev expansions

$$\left(f(x) = \sum_{j=0}^{\infty} a_j T_j(x), \quad p_n(x) = \sum_{j=0}^n a_j T_j(x) \xrightarrow{\text{random sampling}} \widehat{p}_n(x) = \sum_{j=0}^n \frac{a_j}{1 - \sum_{i=0}^{j-1} q_i} T_j(x) \right)$$

• Then, $\mathbf{E}_n\left[\widehat{p}_n(x)\right] = f(x)$ and the gradient estimator with \widehat{p}_n is unbiased (\mathbf{c})

Question: what is a good distribution q_n ?

Optimal Degree Distribution

- An estimator with small variance leads to faster convergence.
- ullet Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t. $\mathbf{E}_n[n] = N$

Optimal Degree Distribution

- An estimator with small variance leads to faster convergence.
- Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t. $\mathbf{E}_n[n] = N$

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is

$$q_n^* = \begin{cases} 0 & \text{for } n < N - k \\ 1 - k (\rho - 1)\rho^{-1} & \text{for } n = N - k \\ k(\rho - 1)^2 \rho^{-(n+1)} & \text{for } n > N - k \end{cases} \qquad \rho > 1 : \text{defined by } f$$

$$k = \min\{N, \left\lfloor \frac{\rho}{\rho - 1} \right\rfloor\}$$

Optimal Degree Distribution

- An estimator with small variance leads to faster convergence.
- Problem: minimize the variance of estimator given the expected degree N

$$\min_{q_n} \operatorname{Var}_n\left[\widehat{p}_n\right]$$
 s.t. $\mathbf{E}_n[n] = N$

Theorem 1 [Han, Avron and Shin 2018]. The optimal degree distribution is

$$q_n^* = \begin{cases} 0 & \text{for } n < N - k \\ 1 - k (\rho - 1)\rho^{-1} & \text{for } n = N - k \\ k(\rho - 1)^2 \rho^{-(n+1)} & \text{for } n > N - k \end{cases} \qquad \rho > 1 : \text{defined by } f$$

$$k = \min\{N, \left\lfloor \frac{\rho}{\rho - 1} \right\rfloor\}$$

Under the optimal distribution, we prove the convergence guarantees of SGD/SVRG

Theorem 2 [Han, Avron and Shin 2018].

$$\mathbf{E}[\|\theta^* - \theta^{(T)}\|_2^2] \le \frac{\mathcal{O}(1)}{T} \|\theta^* - \theta^{(0)}\|_2^2 \qquad \qquad \frac{\theta^* : \text{optimal}}{\theta^{(T)} : \theta \text{ in } \mathbf{T}^{th} \text{ iteration of SGD}}$$

Experimental Results for Two Applications

- 1. Matrix completion via **nuclear norm** regularization (left)
- 2. Gaussian process regression via log-determinant optimization (right)

Our algorithms run at least 6 times faster than other gradient descent methods

Thank you

Stochastic Chebyshev Gradient Descent for Spectral Optimization

Key words: Matrix optimization, Randomized Chebyshev truncation, Variance minimization

Poster # 6 Thurday Dec 6th 5:00 – 7:00 PM @ Room 210 & 230 AB