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Acceleration in first order convex optimization

Optimize smooth convex function: min  f(x)
z€ER4
Gradient Descent: Accelerated Gradient Descent [Nesterov 1983]:

Trt1 = Y — NV f(Yr)
Try1 = T — NV f(zk)

l n— 0

= -V f(x)

Ykt1 = Tht1 + B(Tr41 — xk)
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Gradient Descent: Accelerated Gradient Descent [Nesterov 1983]:

Tr+1 =Yk — NV f(yr)

T = X1 — V xr
k41 E—T f( k) Yk+1 = Tpt1 T B(CUI{—H - xk)

' n—70 n—0 ' [SBC 2015]
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[SBC 2015] Su, Weijie, Stephen Boyd, and Emmanuel Candes. "A differential equation for modeling Nesterov’s
accelerated gradient method: Theory and insights." Advances in Neural Information Processing Systems. 2014.
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i+ %; LVf@) =0  fa®) - f@) = 0(=)

t — tP/?
Arbitrary acceleration l [WW]J 2016]

by change of variable

i+ 2 oV —0 f(e(D) - fa) = O()

[WWIJ 2016] Wibisono, A., Wilson, A. C., & Jordan, M. |. (2016). A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences, 113(47), E7351-E7358.
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Arbitrary acceleration l [WW]J 2016]

by change of variable

i+ 2 s ofetfr —0 se) - 1@ = 00)

However, smooth convex optimization algorithms

. 1
cannot achieve faster rate than: O(t_Q)

[WWIJ 2016] Wibisono, A., Wilson, A. C., & Jordan, M. |. (2016). A variational perspective on accelerated

methods in optimization. Proceedings of the National Academy of Sciences, 113(47), E7351-E7358. 11



Question: How to relate the convergence rate in continuous time ODE to
the convergence rate of a discrete optimization algorithm?
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Question: How to relate the convergence rate in continuous time ODE to
the convergence rate of a discrete optimization algorithm?

Our approach: Discretize the ODE with known Runge-Kutta integrators (e.g.

Euler, midpoint, RK44) and provide theoretical guarantees for convergence
rates.
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Main theorem:

For a p-flat, (s+2)-differentiable convex function, if we discretize the ODE with
order-s Runge-Kutta integrator, we have

Ps

fla(t)) = f(z7) = Ot =+7)

p-flat:

Objective Integrator Rate

p = 2 : Gradient is Lipschitz continuous.

L-smooth (p=2) | RK44(s=4) | O(t~8/%)
p=4:|z;

p=N :log(e™™) |zl (p=4) | Midpoint(s=2) | O(t~8/3)

Order-s: Discretization error scales as O(h*™1); his the step size.
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