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1. Why uncertainty & robustness?

2. Foundations.

3. Recent advances. 



Motivation



What do we mean by Uncertainty?

Return a distribution over predictions 

rather than a single prediction.

● Classification: Output label along with 

its confidence.

● Regression: Output mean along with 

its variance.

Good uncertainty estimates quantify when we 

can trust the model’s predictions.
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What do we mean by Out-of-Distribution Robustness?

I.I.D.     pTEST(y,x) = pTRAIN(y,x)

(Independent and Identically Distributed)

O.O.D. pTEST(y,x) ≠ pTRAIN(y,x) 
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What do we mean by Out-of-Distribution Robustness?

I.I.D. pTEST(y,x) = pTRAIN(y,x)

O.O.D. pTEST(y,x) ≠ pTRAIN(y,x) 
Examples of dataset shift:

● Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.

● Open-set recognition. New classes may appear at test time.

● Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.



ImageNet-C: Varying Intensity for Dataset Shift

Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

I.I.D test set

Increasing dataset shift

https://arxiv.org/abs/1903.12261


ImageNet-C: Varying Intensity for Dataset Shift

Image source: Benchmarking Neural Network Robustness to Common 
Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

I.I.D test set

Increasing dataset shift

https://arxiv.org/abs/1903.12261


● Accuracy drops with 
increasing shift on 
Imagenet-C

● But do the models 
know that they are 
less accurate?

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019

Neural networks do not generalize under covariate shift

https://arxiv.org/abs/1906.02530


● Accuracy drops with 
increasing shift on 
Imagenet-C

● Quality of uncertainty 
degrades with shift
-> “overconfident  
mistakes”

Neural networks do not know when they don’t know



Models assign high confidence predictions to OOD inputs

Image source: “Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images” Nguyen et al. 2014

Example images where model assigns >99.5% confidence.

https://arxiv.org/abs/1412.1897


Models assign high confidence predictions to OOD inputs

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020

High uncertainty
(low confidence)

Low uncertainty
(high confidence)

Deep neural networks

https://arxiv.org/abs/2006.10108


Models assign high confidence predictions to OOD inputs

Image source: “Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness” Liu et al. 2020

High uncertainty
(low confidence)

Low uncertainty
(high confidence)

Ideal behavior

Trust model when x*  is close to pTRAIN(x,y)

Deep neural networks

https://arxiv.org/abs/2006.10108


Applications



Healthcare

Cost-sensitive decision makingDiabetic retinopathy detection from fundus images 
Gulshan et al, 2016 

Healthy Diseased

Healthy 0 10

Diseased 1 0

True label

Predicted 
label

https://jamanetwork.com/journals/jama/fullarticle/2588763


Healthcare

● Use model uncertainty to decide when to trust the model or to defer to a human. 

● Reject low-quality inputs.

Diabetic retinopathy detection from fundus images 
Gulshan et al, 2016 

Model

Confidence > Threshold 

Input

Yes No

Trust model 
predictions

Defer to 
Human

https://jamanetwork.com/journals/jama/fullarticle/2588763


Healthcare

● Model accuracy and uncertainty across patient sub-groups

Mortality prediction from electronic health records 
Dusenberry et al, 2020 

https://arxiv.org/abs/1906.03842


Dataset shift:

● Time of day / Lighting
● Geographical location (City vs suburban)
● Changing conditions (Weather / Construction)

Self-driving cars

Image credit: Sun et al, Waymo Open Dataset

Night

Downtown

Daylight

Construction

Suburban

Weather

https://waymo.com/open/about/


Open Set Recognition

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

● Example: Classification of genomic 

sequences

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Open Set Recognition

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

● Example: Classification of genomic 

sequences

● High accuracy on known classes is 

not sufficient

● Need to be able to detect inputs 

that do not belong to one of the 

known classes

https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html


Conversational Dialog systems

Image source: Larson et al. 2019 “An Evaluation Dataset for Intent 
Classification and Out-of-Scope Prediction”

● Detecting out-of-scope utterances

https://arxiv.org/abs/1909.02027


Active Learning

Image source: Active Learning Literature Survey, Settles 2010

● Use model uncertainty to improve data efficiency and model performance in blindspots

http://burrsettles.com/pub/settles.activelearning.pdf


Bayesian Optimization and Experimental Design

Image source: https://en.wikipedia.org/wiki/Bayesian_optimization

● Which configuration should we explore next?

Round 1

https://en.wikipedia.org/wiki/Bayesian_optimization


Bayesian Optimization and Experimental Design

Image source: https://en.wikipedia.org/wiki/Bayesian_optimization

● Which configuration should we explore next?

Round 2

https://en.wikipedia.org/wiki/Bayesian_optimization


Bayesian Optimization and Experimental Design

Image source: https://en.wikipedia.org/wiki/Bayesian_optimization

● Which configuration should we explore next?

Round 3

https://en.wikipedia.org/wiki/Bayesian_optimization


Bayesian Optimization and Experimental Design

Image source: https://en.wikipedia.org/wiki/Bayesian_optimization

● Which configuration should we explore next?

Round 4

https://en.wikipedia.org/wiki/Bayesian_optimization


Bayesian Optimization and Experimental Design

● Hyperparameter optimization and experimental design
○ Used across large organizations and the sciences

● Photovoltaics, chemistry experiments, AlphaGo, batteries, materials design

Image source: Attia et al. 2020 Closed-loop optimization of fast-charging protocols for batteries with machine learning

https://www.nature.com/articles/s41524-020-0277-x
https://www.nature.com/articles/s41586-020-2442-2?luicode=10000011&lfid=231522type%3D1%26t%3D10%26q%3D%23nature%23&featurecode=20000181&u=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-2442-2
https://arxiv.org/abs/1812.06855
https://www.nature.com/articles/s41586-020-1994-5
http://nature.com/articles/ncomms11241/bay
https://www.nature.com/articles/s41586-020-1994-5


Modeling uncertainty is crucial for exploration vs exploitation trade-off

Bandits and Reinforcement Learning

Image source: David Silver’s RL course 

https://www.davidsilver.uk/wp-content/uploads/2020/03/XX.pdf


● Decision making with asymmetric losses

● Distributional Reinforcement learning

● Non-stationarity

Bandits and Reinforcement Learning

Image source: David Silver’s RL course 

https://www.davidsilver.uk/wp-content/uploads/2020/03/XX.pdf
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All models are wrong, but some models that know when they are wrong, are useful.



Primer on Uncertainty & 
Robustness



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data 

(subject to model identifiability)



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well

● Also known as epistemic uncertainty

● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data (subject to 

model identifiability)

● Models can be from same hypotheses class (e.g. 

linear classifiers in top figure) or belong to different 

hypotheses classes (bottom figure).



Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

● Measurement noise (ex: imprecise tools)

● Missing data (ex: partially observed 

features, unobserved confounders)

● Also known as aleatoric uncertainty

● Data uncertainty is “irreducible*”

○ Persists even in the limit of infinite data

○ *Could be reduced with additional 

features/views
Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


How do we measure the quality of uncertainty?

Calibration Error = |Confidence  -  Accuracy|

predicted probability 
of correctness

observed frequency 
of correctness



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Intuition: For regression, calibration corresponds to coverage in a confidence interval.

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

● Bin the probabilities into B bins.

● Compute the within-bin accuracy and within-bin 

predicted confidence. 

● Average the calibration error across bins 

(weighted by number of points in each bin).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Image source: Guo+ 2017 “On calibration of modern neural networks”

Confidence > Accuracy

=> Overconfident
Confidence < Accuracy

=> Underconfident

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Note: Does not reflect accuracy. 

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True
label

0 0 0 0 0 0 0 1 1 1 Accurate? Calibrated?

Model 
prediction

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ❌ ✅

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Proper scoring rules [Gneiting & Raftery 2007]

● Negative Log-Likelihood (NLL)
○ Also known as cross-entropy
○ Can overemphasize tail probabilities

● Brier Score 
○ Quadratic penalty (bounded range [0,1] unlike log).

○ Can be numerically unstable to optimize.

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


How do we measure the quality of uncertainty?

Evaluate model on 
out-of-distribution 
(OOD) inputs which 
do not belong to any 
of the existing classes

● Max confidence
● Entropy of p(y|x) 

 

CIFAR-10 (i.i.d test inputs)
CIFAR-10 
classifier

SVHN  (o.o.d test inputs)

Confidence on i.i.d inputs > Confidence on o.o.d inputs ?



Measure generalization to a large collection of real-world shifts. A large collection of tasks 
encourages general robustness to shifts (ex: GLUE for NLP).

● Novel textures in object recognition.
● Covariate shift (e.g. corruptions).
● Different sub-populations (e.g. geographical location).

How do we measure the quality of robustness?

Nearby video frames
(ImageNet-Vid-Robust, YTBB-Robust)

Multiple objects and poses
(ObjectNet)

Different renditions
(ImageNet-R)

https://gluebenchmark.com/


Coffee Break (15 mins) ☕
Check out the Q&A.



1. Why uncertainty & robustness?

2. Foundations.

3. Recent advances. 



Fundamentals to Uncertainty 
& Robustness Methods



Neural Networks with SGD
Nearly all models find a single setting of parameters to maximize the probability 
conditioned on data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!
Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


Neural Networks with SGD
Nearly all models find a single setting of parameters to maximize the probability 
conditioned on data. 

Special case: softmax cross entropy with L2 regularization. Optimize with SGD!

Data uncertainty

Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


Neural Networks with SGD

How do we get uncertainty?
● Probabilistic approach

○ Estimate a full distribution for 

● Intuitive approach: Ensembling
○ Obtain multiple good settings for 

Problem: results in just one prediction per example
*No model uncertainty*

Image source: Ranganath+ 2016

https://arxiv.org/abs/1511.02386


Model: A probabilistic model is a joint distribution of outputs y and parameters      given 
inputs x.

Training time: Calculate the posterior, the conditional distribution of parameters given 
observations.

Prediction time: Compute the likelihood given parameters, each parameter configuration of 
which is weighted by the posterior.

Probabilistic Machine Learning

[Murphy 2012]

https://www.cs.ubc.ca/~murphyk/MLbook/


Bayesian Neural Networks

Bayesian neural nets specify a distribution over 
neural network predictions.

This is done by specifying a distribution over 
neural network weights             .

Image source: Gal+ 2015, Dusenberry+ 2020

Image source: Dusenberry+ 2020

https://arxiv.org/abs/2005.07186


Bayesian Neural Networks

Bayesian neural nets specify a distribution over 
neural network predictions.

This is done by specifying a distribution over 
neural network weights             .

Image source: Gal+ 2015, Dusenberry+ 2020

We can reason about uncertainty in models away from 
the data!

Image source: Dusenberry+ 2020

https://arxiv.org/abs/2005.07186


                       is multimodal and complex, so how do we estimate and represent it?

● Locally, covering one mode well 
e.g. with a simpler distribution

○ Variational inference 
○ Laplace approximation

Approximating the posterior

Local approximations Sampling



                       is multimodal and complex, so how do we estimate and represent it?

● Summarize using samples  
○ MCMC
○ Hamiltonian Monte Carlo
○ Stochastic Gradient Langevin 

Dynamics

Approximating the posterior

Local approximations Sampling



• VI casts posterior inference as an optimization problem.

• Posit a family of variational distributions over     such as mean-field,

• Optimize a divergence measure (such as KL) with respect to λ to be close to the  posterior .

Variational inference

Image source: Blei+ 2016. NeurIPS tutorial 

https://nips.cc/Conferences/2016/ScheduleMultitrack?event=6199


Bayesian Neural Networks with SGD

The loss function in variational inference is

Sample from q to Monte Carlo estimate the expectation. Take gradients for SGD.

Likelihood view. The negative of the loss is a lower bound to the marginal 
likelihood.

Code length view. Minimize the # of bits to explain the data, while trying not to 
pay many bits when deviating from the prior.

Check out [Approximate Inference Symposium, Jan 2021]

http://approximateinference.org/


Infinite Width Bayesian Deep Networks are Gaussian Processes

● A specific parameterization of an NN defines a function

● Thus a BNN defines a distribution over functions
○ Induced by the distribution over weights

● How do we reason about this distribution in general?

● It turns out that this corresponds to a known model class in an important case
○ In the limit of infinite width converges to a Gaussian Process [Neal 1994]

Visualizing the distribution over functions

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf


Gaussian Processes
We can compute the integral                                                            analytically! 

Under Gaussian likelihood + prior and
in the limit of infinite basis functions (e.g. hidden units) -> GP

The result is a flexible distribution over functions

● Specified now by a covariance function over examples
○ Covariance over the basis functions
○ Familiar with the kernel trick?

See [Rasmussen & Williams 2006]

Prior

Posterior

http://www.gaussianprocess.org/gpml/


Gaussian Processes
We can compute the integral                                                            analytically! 

Under Gaussian likelihood + prior and
in the limit of infinite basis functions (e.g. hidden units) -> GP

The result is a flexible distribution over functions

● Specified now by a covariance function over examples

● Get a posterior on functions conditioned on data

See [Rasmussen & Williams 2006]

Prior

Posterior

http://www.gaussianprocess.org/gpml/


Infinite Width Deep Neural Networks are Gaussian Processes

● Renewed interest after [Neal 1994]
○ Deep Neural Networks as Gaussian Processes, Lee 2018
○ Gaussian process behaviour in wide deep neural networks, 

Matthews 2018
○ + many more.

● Allows us to reason about the behavior of neural
networks in exciting new ways

○ Without nuances of training, hidden units, etc.

○ e.g. generalization properties, Adlam 2020

● It turns out they are well calibrated!
○ Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit,  Adlam+ 2020

● Want to play around with infinitely wide networks? neural tangents library

NNGP Posterior

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.446.9306&rep=rep1&type=pdf
https://openreview.net/pdf?id=B1EA-M-0Z
https://arxiv.org/pdf/1804.11271.pdf
https://arxiv.org/abs/2008.06786
http://www.gatsby.ucl.ac.uk/~balaji/udl2020/accepted-papers/UDL2020-paper-115.pdf
https://ai.googleblog.com/2020/03/fast-and-easy-infinitely-wide-networks.html


● A prior distribution often involves the complication of approximate inference.
● Ensemble learning offers an alternative strategy to aggregate the predictions over a 

collection of models.
● Often winner of competitions!
● There are two considerations: the collection of models to ensemble; and the 

aggregation strategy.

Popular approach is to average predictions of independently trained models, forming a 
mixture distribution.

Many approaches exist: bagging, boosting, decision trees, stacking.

[Dietterich 2000]

Ensemble Learning

https://scholar.google.com/scholar?q=Dietterich+2000+ensembles&hl=en&as_sdt=0&as_vis=1&oi=scholart


Both aggregate predictions over a collection of models. There are two core distinctions.

In the community, it’s popular to cast one as a “special case” of the other, under trivial 
settings. However, Bayes and ensembles are critically different mindsets.

Bayes vs Ensembles: What’s the difference?

Bayesian model averaging is not model combination. Minka 2002
Bayesian Deep Ensembles via the Neural Tangent Kernel. He, Lakshminarayanan, Teh, NeurIPS 2020

The space of models.
Bayes posits a prior that weighs different 
probability to different functions, and over an 
infinite collection of functions.

Model aggregation.
Bayesian models apply averaging, weighted by 
the posterior.

Ensembles weigh functions equally a priori and 
use a finite collection

Ensembles can apply any strategy and have 
non-probabilistic interpretations.

https://tminka.github.io/papers/minka-bma-isnt-mc.pdf
https://arxiv.org/abs/2007.05864


Lots of recent methods tweak Bayes rule slightly
● Tempering the posterior or downweighting the prior
● Making it unclear what the model actually is

The two objectives of VI complicate the dynamics of training
● New heuristics to train these models

○ Initialization, etc.

Bayes makes sense when the model is well specified
● This remains a challenge for a lot of deep networks
● Sub-optimal when the model is misspecified [Masegosa 2020]

Challenges with Bayes

How Good is the Bayes Posterior in Deep Neural Networks Really? Wenzel+ 2020

https://proceedings.icml.cc/static/paper_files/icml/2020/3581-Paper.pdf


Simple Baselines



Simple Baseline: Recalibration

For classification, modify softmax 
probabilities post-hoc.

Temperature Scaling.

1. Parameterize output layer with scalar T.

2. Minimize loss with respect to T on a 
separate “recalibration” dataset.

Caveat: Dataset shift...
Image source: Guo+ 2017 “On calibration of modern neural networks”

https://arxiv.org/abs/1706.04599


Simple Baseline: Monte Carlo Dropout

 Image source: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

[Gal+ 2015]

https://arxiv.org/abs/1506.02142


Simple Baseline: Deep Ensembles

Idea: Just re-run standard SGD training but with 
different random seeds and average the predictions

● A well known trick for getting better accuracy 
and Kaggle scores

● We rely on the fact that the loss landscape is 
non-convex to land at different solutions

○ Rely on different initializations and SGD 
noise

[Lakshminarayanan+ 2017]

https://arxiv.org/abs/1612.01474


Deep Ensembles work surprisingly well in practice 

Deep Ensembles are consistently among the best performing methods, especially under dataset shift



Hyperparameter Ensembles

Deep ensembles differ only in random seed. By expanding the space of 
hyperparameters we average over, we can get even better accuracy & 
uncertainty estimates.

1. Run random search to generate a set of models.
a. Include random seed as part of the search space.

2. Greedily select the K models to pool.

[Wenzel+ 2020 @ NeurIPS this year]

https://arxiv.org/abs/2006.13570


Classic method for estimating uncertainty in statistical models [Efron 1979] 
● Resample the dataset with replacement and retrain
● Each example gets a different weight under each model

Simple Baseline: Bootstrap

[Nixon+ 2020 @ NeurIPS workshop: I Can’t Believe It’s Not Better!]

https://i-cant-believe-its-not-better.github.io/


Fit a simple distribution to the mode centered around the SGD solution 

● SWAG: Fit a Gaussian around averaged weight iterates near the mode

● Laplace: Fit a quadratic at the mode, using the Hessian or Fisher information

Simple Baseline: SWAG + Laplace

[Maddox+ 2019]

https://arxiv.org/pdf/1902.02476.pdf


Coffee Break (15 mins) ☕
Check out the Q&A.
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What about scale?



The uncertainty-robustness frontier

# Parameters

Quality of 
uncertainty & 
robustness

10M 1B 100B 10T0.1M



The uncertainty-robustness frontier

# Parameters

Quality of 
uncertainty & 
robustness

1. Marginalization
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The uncertainty-robustness frontier

# Parameters

Quality of 
uncertainty & 
robustness

1. Marginalization

2. Priors & 
     Inductive Biases

0.1M 10M 1B 100B 10T



Marginalization



Ensembles as a Giant Model

● Paths between subnetworks are independent ⇒ SGD-trained models have 
independent predictions by construction.

● Bridge the gap from single model to ensembles by sharing parameters, 
learning how to decorrelate predictions during training.

We can trace the frontier by providing a perspective of ensembles as a single 
model.



Efficient Ensembles by Sharing Parameters

Parameterize each weight matrix as a new weight 
matrix W multiplied by the outer product of two 
vectors r and s.

There is an independent set of r and s vectors for 
each ensemble member; W is shared.

Known as BatchEnsemble.

[Wen+ 2020]

http://arxiv.org/abs/2002.06715


BatchEnsemble has a convenient vectorization.

Duplicate each example in a given mini-batch K 
times.

The model yields K outputs for each example.

Can interpret rank-1 weight perturbations as 
feature-wise transformations.

Efficient Ensembles by Sharing Parameters

[Wen+ 2020]

http://arxiv.org/abs/2002.06715


BatchEnsemble works surprisingly well in practice 

BatchEnsemble is consistently the best performing method given # parameters.



By analyzing loss surfaces, can show that 
Variational Bayesian neural nets are effective at 
averaging uncertainty within a single mode. 
They fail to explore the full space.

Can we further ensembles with ideas from 
Bayesian neural nets?

What happened to Bayesian neural nets?

[Fort+ 2019]

https://arxiv.org/abs/1912.02757


1. Start from BatchEnsemble’s parameterization.

2. Add priors over rank-1 weights p(r), p(s).

3. Use mixture variational posteriors.

Rank-1 BNNs combine local and global behavior.

See also cyclical MCMC [Zhang+ 2020].

Rank-1 Bayesian Neural Networks

[Dusenberry+ 2020]

https://arxiv.org/abs/2005.07186


Toward simpler & faster models
Recently, we found you can get the same results with an even simpler configuration: 
multi-input multi-output (MIMO).

Instead of low-rank perturbations, rely on subnetwork paths learned implicitly during training.

[Havasi+ 2020]

https://arxiv.org/abs/2010.06610


Toward simpler & faster models

[Havasi+ 2020]

https://arxiv.org/abs/2010.06610


Toward simpler & faster models

[Havasi+ 2020]

https://arxiv.org/abs/2010.06610


Priors & Inductive Biases



How do we select the prior?

Standard normal prior N(0, 1) is the default. But.. it’s not great.



How do we select the prior?

Standard normal prior N(0, 1) is the default. But.. it’s not great.

● It has bad statistical properties.
○ Does not leverage information about the network structure.
○ In the limit, all hidden units contribute infinitesimally to each input. [Neal 1994]

○ Unclear how to encourage predictive behavior, e.g., robustness to specific OOD.

https://www.cs.toronto.edu/~radford/ftp/pin.pdf
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○ In the limit, all hidden units contribute infinitesimally to each input. [Neal 1994]
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● It has bad optimization properties.
○ Sensitive to parameterization.
○ Too strong a regularizer. [Bowman+ 2015; Trippe Turner 2018]
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How do we select the prior?

Standard normal prior N(0, 1) is the default. But.. it’s not great.

● It has bad statistical properties.
○ Does not leverage information about the network structure.
○ In the limit, all hidden units contribute infinitesimally to each input. [Neal 1994]

○ Unclear how to encourage predictive behavior, e.g., robustness to specific OOD.

● It has bad optimization properties.
○ Sensitive to parameterization.
○ Too strong a regularizer. [Bowman+ 2015; Trippe Turner 2018]

We often have more intuition in terms of input-output relationships: function 
priors. [Hafner+ 2018, Sun+ 2019]

https://www.cs.toronto.edu/~radford/ftp/pin.pdf
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1801.06230
https://arxiv.org/abs/1807.09289
https://arxiv.org/abs/1903.05779


Priors can be non-probabilistic, coming in the form 
of structural biases.

Inductive biases can arise from architecture 
considerations.

What about inductive biases to assist OOD?

● Hypothesis: “Representations should be 
invariant with respect to dataset shift.”

● Data augmentation extends the dataset in 
order to encourage invariances.

● More examples: contrastive learning, 
equivariant architectures.

Image source: Dumoulin & Visin 2016

https://arxiv.org/abs/1603.07285


Priors can be non-probabilistic, coming in the form 
of structural biases.

Data augmentation requires two considerations:

1. Set of base augmentation operations. 
(Ex: color distortions, word substitution)

2. Combination strategy.
(Ex: Sequence of K randomly selected ops.)

See [Hafner+ 2018] for a probabilistic interpretation.

Image source: Dumoulin & Visin 2016

https://arxiv.org/abs/1807.09289
https://arxiv.org/abs/1603.07285


Composing base operations and ‘mixing’ them can improve accuracy and calibration under shift.

Composing a set of base augmentations

[Hendrycks+ 2020]

https://arxiv.org/abs/1912.02781


AugMix improves accuracy & calibration under shift

Data augmentation can provide complementary benefits to marginalization.

[Hendrycks+ 2020]

https://arxiv.org/abs/1912.02781


Imposing distance awareness

Deep Ensemble SNGP

Data augmentation is effective for enforcing 
invariant predictions under shift.

“Models should be distance aware: 
uncertainty increases farther from training data.”

Spectral-normalized Neural Gaussian process

1. Replace output layer with “GP layer”.
2. Apply spectral normalization to preserve input 

distances within internal layers.

See also [van Amersfoort+ 2020].

[Liu+ 2020 @ NeurIPS this year]

https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2006.10108


Imposing distance awareness

BERT on an intent detection benchmark

Data augmentation is effective for enforcing 
invariant predictions under shift.

“Models should be distance aware: 
uncertainty increases farther from training data.”

Spectral-normalized Neural Gaussian process

1. Replace output layer with “GP layer”.
2. Apply spectral normalization to preserve input 

distances within internal layers.

See also [van Amersfoort+ 2020].

[Liu+ 2020 @ NeurIPS this year]

https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2006.10108


Wrapping Up



Enable uncertainty & robustness at the billion-trillion parameter scale.

Datasets. What is the role of priors on increasingly larger and diverse datasets?

Tasks. How do we think about OOD as we move toward general solutions to a wide range of 
tasks?

Model Parallelism. Mixtures of experts are already the backbone. Can we exploit recent ideas 
to enable even bigger and adaptive models?

Open Challenge: Scale



Why are the best models the best? How do we close the gap from theory to practice?

One promising perspective is generalization theory in deep learning. PAC-Bayes provides 
explicit bounds on the generalization error of neural networks.

● In benchmarks, PAC-Bayes measures correlate best with generalization. [Jiang+ 2020]
● There are exact ties between ensemble diversity and tighter generalization bounds.  

[Masegosa 2020]

Open Challenge: Understanding

Check out [NeurIPS workshop: I Can’t Believe It’s Not Better!]

https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/1912.08335


In the past few years, there's been an ongoing call to action on benchmarks:

● Comprehensive baselines across standard and SOTA methods.
● Large-scale models & datasets.
● High-quality code: small changes in the setup can dramatically affect performance.

Preliminary efforts exist but a unified effort is required. 

Today, we’re happy to announce we made progress on this challenge.

Open Challenge: Benchmarks



High-quality implementations of baselines on a 
variety of tasks.

Ready for use:  7 settings, including:

● Wide ResNet 28-10 on CIFAR
● ResNet-50 and EfficientNet on ImageNet
● BERT on Clinc Intent Detection

14 different baseline methods.

Used across 10 projects at Google.

Collaboration with OATML @ Oxford, unifying 
github.com/oatml/bdl-benchmarks.

Uncertainty Baselines
github.com/google/uncertainty-baselines

http://google3/third_party/py/edward2/baselines/cifar
http://github.com/oatml/bdl-benchmarks
http://github.com/google/uncertainty-baselines


Lightweight modules to evaluate a model’s 
robustness and uncertainty predictions.

Ready for use:

● 10 OOD datasets
● Accuracy, uncertainty, and stability metrics
● Many SOTA models (TFHub support!)
● Multiple frameworks (JAX support!)

Enables large-scale studies of robustness 
[Djolonga+ 2020].

Collaboration lead by Google Research, Brain Team @  Zurich.

github.com/google-research/robustness_metrics

Robustness Metrics

https://arxiv.org/abs/2007.08558
http://github.com/google-research/robustness_metrics


● Uncertainty & robustness are critical problems in AI and machine learning.

● Benchmark models with calibration error and a large collection of OOD shifts.

● Probabilistic ML, ensemble learning, and optimization provide a foundation.

● The best methods advance two dimensions: combining multiple neural network 
predictions; and imposing priors and inductive biases.

● As compute increases, the uncertainty-robustness frontier outlines future progress.

Takeaways
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