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Background

Vanilla Q-learning:
» Overestimation - volatile learning error & slow convergence
» max of sampled Q-function > max of expected Q-function

max, c4Q(s’,a’) Eg p(-|s,a) R + 'yg}gﬁQ(s’, a’)

Double Q-learning:
* Use two Q-estimators to reduce the overestimation
Q?—i—l(sa CL) — (1 o Oéﬁt)qu(S, a) + O‘ﬁt (Rt(87 a, S/) + ’VQtB(S/v CL*))
QtB—i-l(Sv a) — (1 T O‘(l T 675)) QtB(Sa CL) + Ck(l - Bt) (Rt(87 a, Sl) + 76224(8/7 b*))

At each iteration, randomly choose A or B to update. 0" = argmaxee s QA(s', a)
b* = argmaxae a4 Q7 (s', )



Problem Setup

» Discounted reward MDP: 1 € (0,1), finite state-action space D := |§| X |A|
« Random reward: R; € [0,1], constant step size/learning rate: a« € (0,1)

« Sampling schemes:
« Synchronous sampling (SynDQ): at each iteration, all state-action pairs are updated

* Asynchronous sampling (AsynDQ): sample only one pair from a single Markovian
trajectory to update

» Optimal Q-function Q*: the unique solution of the Bellman equation

« Non-asymptotic convergence: how the learning error ||Q7“~1 — Q"
as a function of the iteration number T

converges



SynDQ

Theorem (finite-time bound): with probability at least 1 — §, the learning error
r. = Qff — Q* satisfies
c oln 2D

(1—1)? K

Irea |l <|A" [l

forallt >1, where h=1 —%a.

« Initialization error diminishes linearly; constant error scales as +/a. (Trade-off)

Corollary (sample complexity): Ve € (O,ﬁ], we have P(||Q4 — Q*|| <e) >1 -4,

give“
T Y 0,D) = Q : 0
(E, 3 Uy ) (1 )762

» Orders are tight in € (up to logarithm factor), §, and D, matching the lower
bound Azar et al. (2013)




SynDQ

« Significantly improves Xiong et al. (2020) on major parameters (¢,1 —y, D)

SyncDQ Stepsize Time complexity"
T — —
Xiongetal. (2020) | 700 € |l N w=6/T -
(5.1) Q (@in Vi <ﬁ) n Q ((1_17)7 <631,5 v <ln ﬁ) ))
This work eX1-7)¢ | Q (%) Q ((1_%762)

1 The choices w — 1 and w = g optimize the dependence of time complex-
ity on € and 1 — ~ in Xiong et al. (2020) respectively. a V b = max{a, b}.




H SynDQ

Simulation Example

Example adapted from Wainwright (2019b)

Each curve is averaged over 1000
independent runs.

Log error

, matches our analysis of
1
T=0(3)

Initially we use rescaled linear step size to
reduce the initialization error. We switch to a
constant step size of 0.001 after T = 103.
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SynDQ

Proof sketch:

1. Reformulate double-Q as a pair of nested stochastic approximations (SA)
Inner SA: ||QZ — @#|| dynamics
Outer SA: ||Q# — Q*|| dynamics, which takes the output of inner SA as an input
The two SAs have similar structures.

2. Derive a template finite-time bound applicable to both SAs

Per-iteration bound
Adapt the sandwich bound in Wainwright (2019b) and requires less assumptions

3. Construct martingales specific to each SA and apply Azuma-Hoeffding
inequality to establish the finite-time bounds

4. Obtain the overall bound



H AsynDQ

« Ve€ (O,ﬁ], we have P(|Q7 — Q*| <€) >1-4, given

r=9 (62(1L— 7)7 " e(1 i7)2)

« Significantly improves Xiong et al. (2020) on major parameters (¢,1 — vy, L):

| AsyncDQ | Stepsize | Time clomplexityJr
T — 7 — —
Xiong et al. (2020) ?,;}e w=1l-n—-1 |w=06/7 ‘“"—26/3 :
5 A n A 5 (L°(nD)®
G Fa(F )7 2 (Gl b)) o (G
. S S 1 A L
This work 62(1—’)/)6 Q (eiz) Q m) Q (m)

T The choices w — 1,w = ¢, andw = % optimize the dependence of time complexity on €,1 — ~, and L
in Xiong et al. (2020), respectively. In addition, we denote a V b = max{a, b}.



n AsynDQ

The analysis is more challenging:

» coupling between random switching of Q-estimators and Markovian sampling

Some of the Key steps include:

1.

2.

Capture the learning error in terms of key noise and error terms

Construct an to derive a concentration inequality of the
visitation probability

Enables a per-frame analysis adapted from Li et al. (2020) (the frame length determined by
visitation probability)

Construct martingales for bounding learning errors using a



Summary

This work:

- Tighter characterization of sample complexities for (a)synchronous
double Q-learning:

« New proof techniques for nested SAs/double Q-learning

Future work:
« Further improve the bounds, possible match the vanilla Q-learning

« Analyze double Q-learning with function approximations
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