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Background
Vanilla Q-learning:
• Overestimation  volatile learning error & slow convergence
• max of sampled Q-function > max of expected Q-function

Double Q-learning:
• Use two Q-estimators to reduce the overestimation

At each iteration, randomly choose A or B to update.
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• Discounted reward MDP: 𝜆𝜆 ∈ 0,1 , finite state-action space 𝐷𝐷 ≔ 𝒮𝒮 × 𝒜𝒜

• Random reward: 𝑅𝑅𝑡𝑡 ∈ [0,1], constant step size/learning rate: 𝛼𝛼 ∈ 0,1

• Sampling schemes:
• Synchronous sampling (SynDQ): at each iteration, all state-action pairs are updated 
• Asynchronous sampling (AsynDQ): sample only one pair from a single Markovian 

trajectory to update

• Optimal Q-function 𝑄𝑄∗: the unique solution of the Bellman equation

• Non-asymptotic convergence: how the learning error 𝑄𝑄𝑇𝑇𝐴𝐴 − 𝑄𝑄∗ converges 
as a function of the iteration number 𝑇𝑇

Problem Setup
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Theorem (finite-time bound): with probability at least 1 − 𝛿𝛿, the learning error 
𝑟𝑟𝑡𝑡 ≔ 𝑄𝑄𝑡𝑡𝐴𝐴 − 𝑄𝑄∗ satisfies

for all 𝑡𝑡 ≥ 1, where ℎ = 1 − 1−𝛾𝛾
2
𝛼𝛼.

• Initialization error diminishes linearly; constant error scales as 𝛼𝛼. (Trade-off)

Corollary (sample complexity): ∀𝜖𝜖 ∈ (0, 1
1−𝛾𝛾

], we have                                    , 
given

• Orders are tight in 𝜖𝜖 (up to logarithm factor), 𝛿𝛿, and 𝐷𝐷, matching the lower 
bound Azar et al. (2013)

SynDQ
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• Significantly improves Xiong et al. (2020) on major parameters (𝜖𝜖, 1 − 𝛾𝛾,𝐷𝐷)

SynDQ
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Error scaling versus iteration/discount
Simulation Example

• Example adapted from Wainwright (2019b)

• Each curve is averaged over 1000 
independent runs.

• Slope≈ −1
2
, matches our analysis of 

𝑇𝑇 = 𝒪𝒪( 1
𝜖𝜖2

)

• Initially we use rescaled linear step size to 
reduce the initialization error. We switch to a 
constant step size of 0.001 after 𝑇𝑇 = 103.

SynDQ
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Proof sketch:
1. Reformulate double-Q as a pair of nested stochastic approximations (SA)

• Inner SA: 𝑄𝑄𝑡𝑡𝐵𝐵 − 𝑄𝑄𝑡𝑡𝐴𝐴 dynamics
• Outer SA: 𝑄𝑄𝑡𝑡𝐴𝐴 − 𝑄𝑄∗ dynamics, which takes the output of inner SA as an input
• The two SAs have similar structures.

2. Derive a template finite-time bound applicable to both SAs
• Per-iteration bound
• Adapt the sandwich bound in Wainwright (2019b) and requires less assumptions

3. Construct martingales specific to each SA and apply Azuma-Hoeffding
inequality to establish the finite-time bounds

4. Obtain the overall bound

SynDQ
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• ∀𝜖𝜖 ∈ (0, 1
1−𝛾𝛾

], we have                                    , given

• Significantly improves Xiong et al. (2020) on major parameters (𝜖𝜖, 1 − 𝛾𝛾, 𝐿𝐿):

AsynDQ
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The analysis is more challenging: 
• coupling between random switching of Q-estimators and Markovian sampling

Some of the Key steps include:
1. Capture the learning error in terms of key noise and error terms over all the 

preceding iterations
2. Construct an auxiliary Markov chain to derive a concentration inequality of the 

visitation probability 
• Enables a per-frame analysis adapted from Li et al. (2020) (the frame length determined by 

visitation probability)
3. Construct martingales for bounding learning errors using a conditional 

concentration analysis

AsynDQ
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Summary
This work:

• Tighter characterization of sample complexities for (a)synchronous 
double Q-learning: order-level better dependence on major parameters

• New proof techniques for nested SAs/double Q-learning

Future work:

• Further improve the bounds, possible match the vanilla Q-learning

• Analyze double Q-learning with function approximations
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