
Grad2Task: Improved Few-shot Text Classification
Using Gradients for Task Representation

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, Michael Brudno

Few-Shot Text classification

• Text classification: Predicting the label given a sentence or a pair of
sentences
• For example:
• Predicting whether a movie review is positive or negative
• Predicting the topic of news headlines
• Predicting whether two sentences are paraphrases of each other
• ...

• Few-shot: Only a handful of labeled examples are given for each class,
i.e., 5-shot classification.

2 2

Fine-tuning Pretrained Language Models

• Transformer-based pretrained large-scale language models (LMs) have
achieved tremendous success on many NLP tasks.
• Fine-tuning still requires a large amount of labeled data.

Unlabeled Text

Pretraining

News topic
classification

Tweet
classification

Intent
Detection

Fine-tuning

3 3

Transfer Learning

Unlabeled Text

Pretraining Fine-tuning on
source task

Movie review
classification

Fine-tuning on
target task

Product review
classification

4 4

Transfer Learning

Unlabeled Text

Pretraining Fine-tuning on
source task

Movie review
classification

• Transfer learning typically considers moderate or many shot learning.
• Can we utilize a set of source tasks instead of just one?

Fine-tuning on
target task

Product review
classification

5 5

Unlabeled Text

Paraphrase
detection

Pretraining Training on
source tasks

Testing on
target tasks

Movie review
classification

Natural
language
inference

News topic
classification

Tweet
classification

Emotion
classification

Few-Shot Text Classification

6

Unlabeled text

Pretraining

Paraphrase
detection

Training on
source tasks

Movie review
classification

Intent
detection

Testing on
target tasks

News topic
classification

Tweet
classification

Emotion
classification

7

Few-Shot Text Classification by Meta-
Learning
• Meta-learning: Using the experience of solving a distribution of related

tasks, or episodes, to better solve new tasks.
• Challenge 1: Tasks may have different structure, e.g., different number

of labels, different label semantics, etc.
• Popular approaches, like Prototypical Network (ProtoNet), were designed to

learn from a distribution of tasks with similar structure.
• We need approaches that can learn from heterogeneous task distributions by

performing more task-specific adaptation.

• Challenge 2: Tradeoff between flexibility and robustness.
• Approaches like MAML have high flexibility but are also prone to overfitting.
• We need a better balance between flexibility and robustness.

8 8

Contributions
• A novel model-based meta-learning approach based on CNAP
• We use BERT with bottleneck adapters as the base model
• Using gradients as task representation instead of average input representation
• Training an adaptation network to generate parameters that modulate the base

model conditioned on the task representation
• Fixed-cost computation during testing; better balance between flexibility and

robustness

• Outperform other transfer learning and meta-learning approaches

Requeima, James, et al. "Fast and flexible multi-task classification using conditional neural adaptive
processes." Advances in Neural Information Processing Systems 32 (2019): 7959-7970. 9

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Transformer
Layer

Transformer
Layer

Input Sequence

Base Model
(BERT + Adapters + Linear)

Learnable Parameters

Frozen Parameters

Houlsby, Neil, et al. "Parameter-efficient transfer
learning for NLP." International Conference on Machine
Learning. PMLR, 2019.

Output Sequence

10

Nonlinearity

✕

Base Model: BERT with bottleneck adapters

Linear Layer

Approach Overview
• Key idea: Use a separate model to generate adaptation parameters

based on the task representation and modulate the base model with
the generated parameters

• Stage 1: Train the base model as a prototypical network (ProtoNet)

• Stage 2: Train an adaptation network to modulate the base model
according to the task representation

• Both stages use episodic training.
• Support set for adaptation; query set for loss calculation. 11

Prototypical Network

12Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Stage 1

Vu et al. [38] proposed to use task embedding based on FIM to measure task similarity and predict86

transferability according to the distance between task embeddings. We draw inspiration from this87

work to use gradients as features for task representation. Instead of one-to-one transfer, our work can88

be seen as transferring from a set of source tasks to new tasks through meta-learning.89

3 Problem Definition90

Following the terminologies in meta learning, each task (or episode), t = (S,Q), is specified by a91

support set (training set) S and a query set (test set) Q, where S = {(xi, yi)}|S|
i=1, Q = {(xi, yi)}|Q|

i=1,92

xi is a text sequence and yi is a discrete value corresponding to a class. Different tasks could have93

different input domains, different numbers of classes, different label space, and so on.94

Our goal is to train a text classification model on a set of labeled datasets {Ds
i }Ni=1 of N source tasks.95

The model is expected to achieve good performance on new target tasks after training. For each target96

task, a small labeled dataset, e.g., five shots for each class, is given for adaptation or fine-tuning and97

the full test dataset is used for evaluation. Note that when learning on target tasks, we assume no98

access to the source tasks nor other target tasks. This is different with multi-task learning where99

target tasks are learned together with source tasks.100

4 Model Design101

Figure 1 shows an overview of our model architecture, mainly consisting of three parts: a base model102

denoted by f , a task embedding network denoted by d, and an adaptation network denoted by a.103

To make a prediction, our model takes the following steps: 1) given a support set, it uses the base104

model (Section 4.1) to compute gradients w.r.t. a subset of its parameters to use as input to the105

task embedding network (Section 4.2), 2) the task embedding network maps these gradients to task106

representations, 3) layer-wise adaptation networks (Section 4.3) take as input the task representation107

and output adaptation parameters, and lastly 4) the adaptation parameters are applied to the base108

model before it predicts on the query set.109

4.1 Base Model: BERT & Bottleneck Adapters110

Our base model is built upon transformer-based pretrained LMs. We use the pretrained BERTBASE111

model throughout this paper, although other transformer-based pretrained LMs are also applicable [26,112

17]. Following Houlsby et al. [15], we insert two adapter modules containing bottleneck layers into113

each transformer layer of BERT. Each bottleneck adapter is denoted as ↵l, l = 1...2L where L is the114

total number of transformer layers in BERT. We use the bottleneck adapters because, first, BERT115

with adapters are more efficient to train and less vulnerable to overfitting – a desirable property in the116

few-shot setting. Additionally, this simplifies our goal of using gradients for task representation. It117

is infeasible to use the gradients of the whole BERT model because the dimensionality is too large.118

Instead, we compute gradients w.r.t. parameters in these bottleneck layers (< 0.5% of the number of119

parameters in BERT).120

Since text classification is a sequence classification task, we need a pooling method to represent each121

sequence by a single embedding before the embedding is fed into a classifier. Following Devlin et al.122

[10], this single embedding is obtained by applying a linear transformation on top of the contextual123

embedding of the special “[CLS]” token inserted at the beginning of every sequence. We further124

apply a fully connected layer on top of the BERT output. Together, we name the pretrained BERT125

with adapters and the last linear layer as the ‘base model’, denoted by f . We denote the parameters126

of the pretrained BERT as ✓, bottleneck adapters as {↵l}2l=1L, and linear layer as !.127

For the classifier, we use the ProtoNet classifier [32]. Given a support set S, a query example x and128

our base model f , a nearest cluster classifier can be described as follows:129

pbase(y = c |x) = softmax(euc(f(x; ✓,↵,!), µc)), µc =
1

|Sc|
X

xi2Sc

f(xi; ✓,↵,!) (1)

where Sc = {(xi, yi) | (xi, yi) 2 S, yi = c}, µc is the cluster center in the embedding space for130

support examples with class c, and euc refers to the Euclidean distance.131

3

Vu et al. [38] proposed to use task embedding based on FIM to measure task similarity and predict86

transferability according to the distance between task embeddings. We draw inspiration from this87

work to use gradients as features for task representation. Instead of one-to-one transfer, our work can88

be seen as transferring from a set of source tasks to new tasks through meta-learning.89

3 Problem Definition90

Following the terminologies in meta learning, each task (or episode), t = (S,Q), is specified by a91

support set (training set) S and a query set (test set) Q, where S = {(xi, yi)}|S|
i=1, Q = {(xi, yi)}|Q|

i=1,92

xi is a text sequence and yi is a discrete value corresponding to a class. Different tasks could have93

different input domains, different numbers of classes, different label space, and so on.94

Our goal is to train a text classification model on a set of labeled datasets {Ds
i }Ni=1 of N source tasks.95

The model is expected to achieve good performance on new target tasks after training. For each target96

task, a small labeled dataset, e.g., five shots for each class, is given for adaptation or fine-tuning and97

the full test dataset is used for evaluation. Note that when learning on target tasks, we assume no98

access to the source tasks nor other target tasks. This is different with multi-task learning where99

target tasks are learned together with source tasks.100

4 Model Design101

Figure 1 shows an overview of our model architecture, mainly consisting of three parts: a base model102

denoted by f , a task embedding network denoted by d, and an adaptation network denoted by a.103

To make a prediction, our model takes the following steps: 1) given a support set, it uses the base104

model (Section 4.1) to compute gradients w.r.t. a subset of its parameters to use as input to the105

task embedding network (Section 4.2), 2) the task embedding network maps these gradients to task106

representations, 3) layer-wise adaptation networks (Section 4.3) take as input the task representation107

and output adaptation parameters, and lastly 4) the adaptation parameters are applied to the base108

model before it predicts on the query set.109

4.1 Base Model: BERT & Bottleneck Adapters110

Our base model is built upon transformer-based pretrained LMs. We use the pretrained BERTBASE111

model throughout this paper, although other transformer-based pretrained LMs are also applicable [26,112

17]. Following Houlsby et al. [15], we insert two adapter modules containing bottleneck layers into113

each transformer layer of BERT. Each bottleneck adapter is denoted as ↵l, l = 1...2L where L is the114

total number of transformer layers in BERT. We use the bottleneck adapters because, first, BERT115

with adapters are more efficient to train and less vulnerable to overfitting – a desirable property in the116

few-shot setting. Additionally, this simplifies our goal of using gradients for task representation. It117

is infeasible to use the gradients of the whole BERT model because the dimensionality is too large.118

Instead, we compute gradients w.r.t. parameters in these bottleneck layers (< 0.5% of the number of119

parameters in BERT).120

Since text classification is a sequence classification task, we need a pooling method to represent each121

sequence by a single embedding before the embedding is fed into a classifier. Following Devlin et al.122

[10], this single embedding is obtained by applying a linear transformation on top of the contextual123

embedding of the special “[CLS]” token inserted at the beginning of every sequence. We further124

apply a fully connected layer on top of the BERT output. Together, we name the pretrained BERT125

with adapters and the last linear layer as the ‘base model’, denoted by f . We denote the parameters126

of the pretrained BERT as ✓, bottleneck adapters as {↵l}2l=1L, and linear layer as !.127

For the classifier, we use the ProtoNet classifier [32]. Given a support set S, a query example x and128

our base model f , a nearest cluster classifier can be described as follows:129

pbase(y = c |x) = softmax(euc(f(x; ✓,↵,!), µc)), µc =
1

|Sc|
X

xi2Sc

f(xi; ✓,↵,!) (1)

where Sc = {(xi, yi) | (xi, yi) 2 S, yi = c}, µc is the cluster center in the embedding space for130

support examples with class c, and euc refers to the Euclidean distance.131

3

Vu et al. [38] proposed to use task embedding based on FIM to measure task similarity and predict86

transferability according to the distance between task embeddings. We draw inspiration from this87

work to use gradients as features for task representation. Instead of one-to-one transfer, our work can88

be seen as transferring from a set of source tasks to new tasks through meta-learning.89

3 Problem Definition90

Following the terminologies in meta learning, each task (or episode), t = (S,Q), is specified by a91

support set (training set) S and a query set (test set) Q, where S = {(xi, yi)}|S|
i=1, Q = {(xi, yi)}|Q|

i=1,92

xi is a text sequence and yi is a discrete value corresponding to a class. Different tasks could have93

different input domains, different numbers of classes, different label space, and so on.94

Our goal is to train a text classification model on a set of labeled datasets {Ds
i }Ni=1 of N source tasks.95

The model is expected to achieve good performance on new target tasks after training. For each target96

task, a small labeled dataset, e.g., five shots for each class, is given for adaptation or fine-tuning and97

the full test dataset is used for evaluation. Note that when learning on target tasks, we assume no98

access to the source tasks nor other target tasks. This is different with multi-task learning where99

target tasks are learned together with source tasks.100

4 Model Design101

Figure 1 shows an overview of our model architecture, mainly consisting of three parts: a base model102

denoted by f , a task embedding network denoted by d, and an adaptation network denoted by a.103

To make a prediction, our model takes the following steps: 1) given a support set, it uses the base104

model (Section 4.1) to compute gradients w.r.t. a subset of its parameters to use as input to the105

task embedding network (Section 4.2), 2) the task embedding network maps these gradients to task106

representations, 3) layer-wise adaptation networks (Section 4.3) take as input the task representation107

and output adaptation parameters, and lastly 4) the adaptation parameters are applied to the base108

model before it predicts on the query set.109

4.1 Base Model: BERT & Bottleneck Adapters110

Our base model is built upon transformer-based pretrained LMs. We use the pretrained BERTBASE111

model throughout this paper, although other transformer-based pretrained LMs are also applicable [26,112

17]. Following Houlsby et al. [15], we insert two adapter modules containing bottleneck layers into113

each transformer layer of BERT. Each bottleneck adapter is denoted as ↵l, l = 1...2L where L is the114

total number of transformer layers in BERT. We use the bottleneck adapters because, first, BERT115

with adapters are more efficient to train and less vulnerable to overfitting – a desirable property in the116

few-shot setting. Additionally, this simplifies our goal of using gradients for task representation. It117

is infeasible to use the gradients of the whole BERT model because the dimensionality is too large.118

Instead, we compute gradients w.r.t. parameters in these bottleneck layers (< 0.5% of the number of119

parameters in BERT).120

Since text classification is a sequence classification task, we need a pooling method to represent each121

sequence by a single embedding before the embedding is fed into a classifier. Following Devlin et al.122

[10], this single embedding is obtained by applying a linear transformation on top of the contextual123

embedding of the special “[CLS]” token inserted at the beginning of every sequence. We further124

apply a fully connected layer on top of the BERT output. Together, we name the pretrained BERT125

with adapters and the last linear layer as the ‘base model’, denoted by f . We denote the parameters126

of the pretrained BERT as ✓, bottleneck adapters as {↵l}2l=1L, and linear layer as !.127

For the classifier, we use the ProtoNet classifier [32]. Given a support set S, a query example x and128

our base model f , a nearest cluster classifier can be described as follows:129

pbase(y = c |x) = softmax(euc(f(x; ✓,↵,!), µc)), µc =
1

|Sc|
X

xi2Sc

f(xi; ✓,↵,!) (1)

where Sc = {(xi, yi) | (xi, yi) 2 S, yi = c}, µc is the cluster center in the embedding space for130

support examples with class c, and euc refers to the Euclidean distance.131

3

1. Build centroids:

t = (S,Q), the loss is computed as:170

`pn(t) =
1

|Q|
X

xi2Q
� log pbase(yi |xi), (7)

During this stage, only the parameters of the bottleneck adapters, layer normalization parameters and171

the top linear layer are updated while other parameters of the base model are frozen. The parameters172

are learned by:173

↵⇤,!⇤ = argmin
↵,!

Et2T `pn(t). (8)

In the second stage, the task embedding network and the adaptation network are trained episodically174

to generate good quality task embeddings and adaptation parameters for better performance on the175

query set of each episode. Specifically, as shown in Algorithm 1, we freeze the encoding network176

and only train the task embedding network d and the adaptation network a. In this stage, the frozen177

base model is used to generate task-specific gradient information and also be adapted to predict the178

query labels. Same with the first training stage, we also use the ProtoNet loss to train d and a but179

use the adapted based model. The parameters of the task embedding network � and the adaptation180

network is learned by:181

�⇤, ⇤ = argmin
�,

Et2T `
0
pn(t), `0pn(t) =

1

|Q|
X

xi2Q
� log pfinal(yi |xi), (9)

where the loss is computed based on the modulated model.182

5 Experiments and Results183

5.1 Experiment setup184

We use datasets for training and testing that have different input domains and different numbers of185

labels. Each dataset appears during either training or testing – not both. Following [4], we use tasks186

from the GLUE benchmark [40] for training. Specifically, we use WNLI (m/mm), SST-2, QQP, RTE,187

MRPC, QNLI, and the SNLI dataset [8], to which we refer as our ‘meta-training datasets’. The188

validation set of each dataset is used for hyperparameter searching and model selection. We train189

our model and other meta-learning models by sampling episodes from the meta-training tasks. The190

sampling process first selects a dataset and then randomly selects k-shot examples for each class as191

the support set and another k-shot as the query set. As with Bansal et al. [4], the probability of a task192

being selected is proportional to the square root of its dataset size.193

We use the same test datasets as Bansal et al. [4], but also add several new datasets to increase194

task diversity, namely the Yelp [1] dataset to predict review stars, the SNIPS dataset [9] for intent195

detection, and the HuffPost [18] dataset for news headline classification. We refer to this set of tasks196

as our ‘meta-testing datasets’. For each test task and a specific number of shot k, ten k-shot datasets197

are randomly sampled. Each time one of the ten datasets is given for model training or fine-tuning,198

the model is then tested on the full test dataset of the corresponding task. This is in line with real199

world applications where models built on a small training set are tested on the full test set.200

Several test datasets used by Bansal et al. [4] contain very long sentences, while the BERTBERT (also201

used by Bansal et al. [4]) only allows for sequences up to 128 tokens. Truncating long sequences202

beyond the maximal length might lose important information for text classification, leading to noise203

in the test results. In order ensure the results can truly reflect text classification, we discard a few204

datasets used by Bansal et al. [4] that contain many very long sentences. See Appendix B for more205

details about the dataset we use.206

5.2 Few shot text classification results207

We use the cased version of the BERTBASE model for all experiments. We compare our proposed208

approach with the following approaches:209

BERT. The pretrained BERT is simply fine-tuned on the labeled training data of the target task and210

then evaluated on the corresponding test data. No transfer learning happens with this model.211

6

2. Apply Softmax over the Euclidean distances:

3. Calculate cross entropy loss on the query set (ProtoNet loss):

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network Stage 2

13

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

!%"#$!

!%"!

!%!

!$!

"%"&'()

"%"#$&'()

"%&'()

"$&'()

Ta
sk

 E
m

be
dd

in
g N

et
w

or
k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

!#$%&'

✕

✕

✕

✕

();

MLP

MLP

MLP

MLP

"#()*

##()*

"#+,$

##+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

Figure 1: Model architecture overview. Left: The base model contains a pretrained BERT model
with bottleneck adapters inserted in each transformer layer and a linear layer stacked on the top. The
task embedding network is an RNN-based model that maps gradients from the base model into
task representations in a layer-wise fashion, which are used for base model adaptation. Right: The
adaptation network contains MLPs that takes as input the task representations and intermediate
activate inside the base model, and outputs shifting and scaling parameters that are used to adapt the
base model. Specifically, given the task embedding for a certain layer, we concatenate it with the
input hidden representation to the current layer and map them into four shifting/scaling parameters
by four MLP networks, which are applied on the hidden representations inside the adapter, referred
as the auto-regressive adaptation.

4.2 Task Embedding Network for Per-Layer Task Encoding132

Our task embedding network, denoted by d, is parametrized as a recurrent neural network (RNN)133

over the layers. It takes as input at each layer the gradient information of the adapter parameters at134

the given layer. Following Achille et al. [2], we use the gradient information defined by the FIM of135

the base model’s parameters, denoted by ⇥ = {✓,↵,!}. The FIM is computed as:136

F⇥ = Ex,y⇠p̂(x)pbase(y | x)r⇥ log pbase(y |x)r⇥ log pbase(y |x)T , (2)

where p̂(x) is the empirical distribution defined by the dataset. Following Achille et al. [2], we only137

use the diagonal values of F⇥. We only use those values corresponding to the adapter parameters,138

denoted by g↵l for adapter layer l, l = 1 . . . 2L.139

Then, the RNN-based task embedding network d, parameterized by �, maps each g↵l into a task140

embedding:141

etaskl = d(hl;�), hl = d(g↵l , hl�1;�), (3)

where hl is the hidden representation, etaskl is the task embedding at layer l, and h0 is the learnable142

initial RNN hidden state.143

4.3 Adaptation Network with Auto-Regressive Adaptation144

As shown on the right side of Figure 1, at each layer l, the adaptation network output four adaptation145

parameters: �mid
l and �mid

l are scaling and shifting adaptation parameters applied on the hidden146

representation after the middle layer, and �out
l and �out

l are scaling and shifting adaptation parameters147

applied on the output hidden representation. The input to the adaptation network at each layer consists148

of both the task representation and the intermediate activation output by previous adapted layers. Due149

to the conditioning on previous modulated layers, we refer this adaptation method as auto-regressive150

adaptation, following Requeima et al. [28].151

4

Fisher Information Matrix (FIM):

Only use the diagonal values and those values
corresponding to the adapter parameters.

• Inspired by Task2Vec, a task embedding approach based
on the FIM.

• Gradients can capture information from both input and
output.

Achille, Alessandro, et al. "Task2vec: Task embedding for meta-learning." Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2019.

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

14

Stage 2

Use a RNN as the task embedding network

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

15

Stage 2

Task embeddings are used as input
to generate adaptation parameters,
which are applied on each adapter.

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

16

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

17

Stage 2

After adaptation, calculate the
ProtoNet loss on the query set and
do backpropagation to update the
task embedding network and
adaptation network.

Calculate gradients
on support set

Adapt and predict on
query set

Support

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

𝑔!"#$%

𝑔!"%

𝑔!%

𝑔$%

𝑒!"&'()

𝑒!"#$&'()

𝑒!&'()

𝑒$&'()

Ta
sk

 E
m

be
dd

in
g

N
et

w
or

k

Linear Layer

Support Query

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

Self-Attention Layer

Fully-Connected Layer

Bottleneck Adapter

Bottleneck Adapter

...

Linear Layer

Base Model:
Pretrained BERT with
Bottleneck Adapters

Nonlinearity

✕

𝑒#$%&'

✕

✕

✕

✕
();

MLP

MLP

MLP

MLP

𝛾#()*

𝛽#()*

𝛾#+,$

𝛽#+,$

Bottleneck Adapters
with Task Adaptation

Adaptation
Network

18

Compared with fine-tuning based
approach: A shared model for all tasks;
no need to tune hyperparameters for
each task.

Compared with MAML: Fixed-cost
adaptation during testing; no need to
tune hyperparameter during testing.

Compared with ProtoNet: Task-specific
adaptation.

Experiments: Meta-Training Datasets

Trapit Bansal, Rishikesh Jha, and Andrew McCallum. "Learning to Few-Shot Learn Across Diverse
Natural Language Classification Tasks." Proceedings of the 28th International Conference on
Computational Linguistics. 2020.

We follow the evaluation process of Leopard.

19 19

Experiments: Meta-Testing Datasets

20 20

Table 1: Results on diverse few-shot text classification tasks. Results marked with ‘*’ are from [4]. For
Leopard, we reuse the their results on the first seven tasks and report the results of our implementation
on the last three newly added tasks.

Model BERT* MT-BERT* Leopard PN-BERT PN-BN Grad2Task

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

4

airline 42.76 13.50 46.29 12.26 54.95 11.81 65.39 12.73 65.33 7.95 70.64 3.95
disaster 55.73 10.29 50.61 8.33 51.45 4.25 54.01 2.90 53.48 4.76 55.43 5.89
emotion 9.20 3.22 9.84 2.14 11.71 2.16 11.69 1.87 12.52 1.32 12.76 1.35
political_audience 51.89 1.72 51.53 1.80 52.60 3.51 52.77 5.86 51.88 6.37 51.28 5.74
political_bias 54.57 5.02 54.66 3.74 60.49 6.66 58.26 10.42 61.72 5.65 58.74 9.43
political_message 15.64 2.73 14.49 1.75 15.69 1.57 17.82 1.33 20.98 1.69 21.13 1.97
rating_kitchen 34.76 11.20 36.77 10.62 50.21 9.63 58.47 11.12 55.99 9.85 57.09 9.74
huffpost_10 - - - - 11.8 1.41 14.97 1.69 16.81 2.52 18.5 2
snips - - - - 21.36 2.7 28.99 3.93 46.29 3.91 52.51 2.68
yelp - - - - 36.95 2.98 42.84 2.66 42.64 2.93 43 3.55
Average - - - - 36.72 4.67 40.52 5.45 42.76 4.70 44.11 4.63

8

airline 38.00 17.06 49.81 10.86 61.44 3.90 69.14 4.84 69.37 2.46 72.04 2.58
disaster 56.31 9.57 54.93 7.88 55.96 3.58 54.48 3.17 53.85 3.03 57.49 5.36
emotion 8.21 2.12 11.21 2.11 12.90 1.63 13.10 2.64 13.87 1.82 13.99 1.90
political_audience 52.80 2.72 54.34 2.88 54.31 3.95 55.17 4.28 53.08 6.08 52.60 5.55
political_bias 56.15 3.75 54.79 4.19 61.74 6.73 63.22 1.96 65.36 2.03 64.06 1.12
political_message 13.38 1.74 15.24 2.81 18.02 2.32 20.40 1.12 21.64 1.72 21.31 1.16
rating_kitchen 34.49 8.72 47.98 9.73 53.72 10.31 57.08 11.54 56.27 10.70 58.35 9.83
huffpost_10 - - - - 12.73 2.23 16.52 1.48 19.03 2.18 21.12 1.69
snips - - - - 20.51 2.93 32.19 1.85 52.74 2.74 57.19 2.77
yelp - - - - 38.31 3.52 44.7 1.68 43.83 2.45 43.66 1.65
Average - - - - 38.96 4.11 42.60 3.46 44.90 3.52 46.18 3.36

16

airline 58.01 8.23 57.25 9.90 62.15 5.56 71.06 1.60 69.83 1.80 72.30 1.75
disaster 64.52 8.93 60.70 6.05 61.32 2.83 55.30 2.68 57.38 5.25 59.63 3.11
emotion 13.43 2.51 12.75 2.04 13.38 2.20 12.81 1.21 14.11 1.12 13.72 1.24
political_audience 58.45 4.98 55.14 4.57 57.71 3.52 56.16 2.81 57.23 2.77 55.46 3.34
political_bias 60.96 4.25 60.30 3.26 65.08 2.14 61.98 6.89 65.38 1.71 63.83 0.74
political_message 20.67 3.89 19.20 2.20 18.07 2.41 21.36 0.86 24.00 1.39 22.22 1.20
rating_kitchen 47.94 8.28 53.79 9.47 57.00 8.69 61.00 9.17 59.45 8.33 61.72 6.38
huffpost_10 - - - - 13.78 1.05 17.74 1.42 21.43 1.53 23.57 1.76
snips - - - - 24.49 1.62 33.84 3.08 54.64 2.06 59.47 1.91
yelp - - - - 39.7 2.31 45.5 1.72 44.78 1.8 44.87 2.09
Average - - - - 41.27 3.23 43.67 3.14 46.82 2.78 47.68 2.35

MT-BERT. The pretrained BERT is first trained on the meta-training tasks via multi-task learning212

and then fine-tuned and evaluated on each test task.213

ProtoNet-BERT. ProtoNet using pretrained BERT plus a linear layer as the feature extractor. The214

model is trained episodically on the meta-training datasets.215

ProtoNet-BN. Similar with ProtoNet-BERT but with adapter modules inserted in the transformer216

layers. Only the parameters of the adapters, linear layer, and layer normalization layers inside BERT217

are updated during training. The model is trained episodically on the meta-training datasets.218

MAML based approach. We compare with the MAML-based approach, named Leopard, proposed219

by Bansal et al. [4] with first-order approximation and meta-learned per-layer learning rates. We220

re-implemented this model, and include both their reported results and results of our implementation221

for fair comparison. See Appendix C for more details.222

Grad2Task. This is our proposed model built upon pretrained ProtoNet-BERT BN and trained223

episodically to learn to adapt.224

Results are shown in Table 1. Overall, our proposed method achieves the best performance. Our225

model is built upon ProtoNet-BN but keeps its parameters untouched and only learns to adapt the226

bottleneck adapter modules for different tasks. On average, our approach improves over ProtoNet-BN227

by 1.02%, indicating task conditioning can further improve a strong baseline.228

Surprisingly, we find that ProtoNet-BERT achieves very good performance and outperforms the229

optimization-based method, Leopard, while Bansal et al. [4] reported the opposite results. We thus230

re-implemented both Leopard and ProtoNet-BERT and confirm that our MAML implementation has231

similar performance with Leopard but our ProtoNet-BERT results are much better than theirs (see232

Appendix C for a more detailed comparison).233

7

Few-Shot Text Classification Results

21

Simple fin
e-tuning

Multi-t
ask fin

e-tuning

MAML-based

ProtoNet w/ BERT

PN-BERT + bottle
neck adapters

Ours

Although we observe that ProtoNet-BERT has better performance and faster convergence rates during234

training and validation, it is outperformed by ProtoNet-BN which has orders of magnitude fewer235

parameters to learn (fewer than 0.5% of the number of BERT’s parameters). We hypothesize this is236

because ProtoNet-BERT is more vulnerable to overfitting on the meta-training tasks.237

6 Analysis and Ablations238

6.1 Same/different task classification239

We conduct a toy experiment to evaluate whether gradients are capable of representing tasks. This240

experiment is about classifying whether two few-shot datasets are sampled from the same task. For241

each few-shot dataset, we further split it into two subsets – one as the support set and the other as242

the query set. We then calculate the ProtoNet loss and its gradients using the base model. We repeat243

this process on the other few-shot training set and feed the gradients on the two datasets into a single244

linear layer, respectively. Prediction is given by the cosine similarity between the two representations245

after linear transformation and the binary cross entropy loss is used for training.246

We train the MLP classifier on few-shot dataset pairs sampled from our meta-training datasets, and247

test it on dataset pairs sampled from our meta-testing datasets. Figure 2 shows the AUC curves on248

the testing set. Although the model is simple, it can predict same/different labels reasonably well on249

unseen tasks during training. With more shots, the gradient becomes more reliable, thus the model250

achieves better performance, resulting in an AUC score of 0.84 with 16 shots.

Figure 2: Results on the same/different experiments. Each column shows the results of classifying
pairs of dataset with a certain number of shots.

251

6.2 Ablation Study252

We conduct ablation studies to justify our decision choices. We report the average accuracy on253

meta-testing datasets of different model variants in Table 2. Results show that our approach achieves254

the best average accuracy among all model variants, resulting in average accuracy of 45.99%. The255

full results are included in Appendix D256

Table 2: Ablation results.
Model Mean Acc.

Grad2Task w/ Gradients 45.99
ProtoNet Longer Training 45.10
Grad2Task w/ X 45.66
Grad2Task w/ X&Y 45.16
Grad2Task Adapt All 44.57
Grad2Task w/ Pretrained TaskEmb 45.68
Hypernetwork 44.79

Does the adaptation really help? Starting from257

the base model trained after the first stage, we com-258

pare our approach with just training the base model259

using the ProtoNet loss for the same number of260

steps. Shown as “ProtoNet Longer Training” in Ta-261

ble 2, the performance of this approach is worse262

than our proposed approach. This justifies that we263

can do better by adapting the base model than train-264

ing it for more steps.265

How are gradients compared with other task266

representations? We compare our approach with267

other CNP-based approaches with different meth-268

ods of task embedding. Similar to Requeima et al. [36], we use the average embeddings of the269

training sequences as representations for a task, and keep the other model architecture unchanged.270

8

22

“Same/Different” Experiment Results
Classifying whether two few-shot tasks are sampled from the same
dataset or not.

23

Although we observe that ProtoNet-BERT has better performance and faster convergence rates during234

training and validation, it is outperformed by ProtoNet-BN which has orders of magnitude fewer235

parameters to learn (fewer than 0.5% of the number of BERT’s parameters). We hypothesize this is236

because ProtoNet-BERT is more vulnerable to overfitting on the meta-training tasks.237

6 Analysis and Ablations238

6.1 Same/different task classification239

We conduct a toy experiment to evaluate whether gradients are capable of representing tasks. This240

experiment is about classifying whether two few-shot datasets are sampled from the same task. For241

each few-shot dataset, we further split it into two subsets – one as the support set and the other as242

the query set. We then calculate the ProtoNet loss and its gradients using the base model. We repeat243

this process on the other few-shot training set and feed the gradients on the two datasets into a single244

linear layer, respectively. Prediction is given by the cosine similarity between the two representations245

after linear transformation and the binary cross entropy loss is used for training.246

We train the MLP classifier on few-shot dataset pairs sampled from our meta-training datasets, and247

test it on dataset pairs sampled from our meta-testing datasets. Figure 2 shows the AUC curves on248

the testing set. Although the model is simple, it can predict same/different labels reasonably well on249

unseen tasks during training. With more shots, the gradient becomes more reliable, thus the model250

achieves better performance, resulting in an AUC score of 0.84 with 16 shots.

Figure 2: Results on the same/different experiments. Each column shows the results of classifying
pairs of dataset with a certain number of shots.

251

6.2 Ablation Study252

We conduct ablation studies to justify our decision choices. We report the average accuracy on253

meta-testing datasets of different model variants in Table 2. Results show that our approach achieves254

the best average accuracy among all model variants, resulting in average accuracy of 45.99%. The255

full results are included in Appendix D256

Table 2: Ablation results.
Model Mean Acc.

Grad2Task w/ Gradients 45.99
ProtoNet Longer Training 45.10
Grad2Task w/ X 45.66
Grad2Task w/ X&Y 45.16
Grad2Task Adapt All 44.57
Grad2Task w/ Pretrained TaskEmb 45.68
Hypernetwork 44.79

Does the adaptation really help? Starting from257

the base model trained after the first stage, we com-258

pare our approach with just training the base model259

using the ProtoNet loss for the same number of260

steps. Shown as “ProtoNet Longer Training” in Ta-261

ble 2, the performance of this approach is worse262

than our proposed approach. This justifies that we263

can do better by adapting the base model than train-264

ing it for more steps.265

How are gradients compared with other task266

representations? We compare our approach with267

other CNP-based approaches with different meth-268

ods of task embedding. Similar to Requeima et al. [36], we use the average embeddings of the269

training sequences as representations for a task, and keep the other model architecture unchanged.270

8

Ablation Study

Future Work

• Better ways to utilize gradient-based task representations for
meta-learning
• Extend our framework to other kinds of NLP tasks
•Moderate-shot learning?

5-shot many-shot

Meta-learning Fine-tuning
?

24

Grad2Task: Improved Few-shot Text Classification
Using Gradients for Task Representation

Jixuan Wang, Kuan-Chieh Wang, Frank Rudzicz, Michael Brudno
jixuan@cs.toronto.edu

