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What this paper is about

Time-varying stochastic optimization:

min
x

ϕt(x) := ft(x) + rt(x)

indexed by time t ∈ N, where

1. loss ft : Rd ! R is L-smooth and µ-strongly convex;

2. regularizer rt : Rd ! R ∪ {∞} is closed and convex;

3. objective ϕt may evolve stochastically in time.

Goal: Track the optimum “as closely as possible” in “shortest amount of time”.

I We build on extensive literature on the subject: Bartlett et al. ’00, Besbes et
al. ’15, Guo-Ljung ’95, Long ’99, Madden et al. ’21, Wilson et al. ’18, . . .

Online proximal stochastic gradient method:

Set xt+1 = proxηtrt

(
xt − ηt∇̃ft(xt)

)
where ∇̃ft(xt) is an unbiased estimator of ∇ft(xt).
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Tracking the minimizer

Drift and noise: Suppose there exist ∆, σ > 0 such that

E‖x?t − x?t+1‖2 ≤ ∆2 and E‖∇ft(xt)− ∇̃ft(xt)‖2 ≤ σ2.

Error decomposition: using step size η ≤ 1/2L yields

E‖xt − x?t ‖2 . (1− µη)t · ‖x0 − x?0‖2︸ ︷︷ ︸
optimization

+ ησ2

µ︸︷︷︸
noise

+
(

∆
µη

)2

︸ ︷︷ ︸
drift

.

Asymptotic error and optimal step size:

E := min
η∈(0,1/2L]

{
ησ2

µ
+
(

∆
µη

)2
}

and η? := min

{
1

2L,
(

2∆2

µσ2

)1/3
}
.
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Numerical illustration
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Figure: Semilog plots of guaranteed bounds and empirical tracking errors at horizon T
with respect to step size η for logistic regression with stochastically evolving labels.
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Two regimes of variation

Asymptotically optimal step size:

η? =


1

2L if ∆
σ
≥
√

µ
16L3(

2∆2

µσ2

)1/3
otherwise.

I The high drift-to-noise regime ∆/σ ≥
√
µ/16L3 is uninteresting.

Thm (C-Drusvyatskiy-Harchaoui ’21): In the low drift-to-noise regime, a
step-decay schedule {ηt} ensures:

E‖xt − x?t ‖2 . E after time t .
L

µ
log
(
‖x0 − x?0‖2

E

)
+ σ2

µ2E .

I This is analogous to the static setting with E in place of target accuracy ε.
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High probability guarantees

Settings in which an online algorithm can only be executed once call for
efficiency estimates that hold with high probability.

Sub-Gaussian drift and noise: Suppose there exist ∆, σ > 0 such that

1. ‖x?t − x?t+1‖ is ∆-sub-Gaussian (conditioned on Ft);

2. ‖∇ft(xt)− ∇̃ft(xt)‖ is σ-sub-Gaussian (conditioned on Ft).

Thm (C-Drusvyatskiy-Harchaoui ’21): For any specified t ∈ N and δ ∈ (0, 1),
using step size η ≤ 1/2L yields the following bound with probability at least
1− δ:

‖xt − x?t ‖2 .
(

1− µη

2

)t
‖x0 − x?0‖2 +

(
ησ2

µ
+
(

∆
µη

)2
)

log
(
e

δ

)
.

I Proof uses techniques from Harvey et al. ’19.

I With this result in hand, implementing a step-decay schedule as before yields
a high-probability efficiency estimate.
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Tracking the minimal value

Using the running average

x̂0 := x0 and x̂t+1 :=
(

1− µηt
2− µηt

)
x̂t + µηt

2− µηt
xt+1

of the iterates {xt}, we obtain analogous results for tracking the minimal value.

Stronger control on drift and noise: Suppose the regularizers rt ≡ r are
identical and there exist ∆, σ > 0 such that for all 0 ≤ i < t,

1. the gradient drift Gi,t := supx ‖∇fi(x)−∇ft(x)‖ satisfies

E[G2
i,t] ≤ (µ∆|i− t|)2;

2. the gradient noise zt := ∇ft(xt)− ∇̃ft(xt) satisfies

E‖zt‖2 ≤ σ2 and E〈zi, x?t 〉 = 0.
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Tracking the minimal value

Thm (C-Drusvyatskiy-Harchaoui ’21): Using step size η ≤ 1/2L yields

E[ϕt(x̂t)− ϕ?t ] .
(

1− µη

2

)t
· (ϕ0(x0)− ϕ?0)︸ ︷︷ ︸

optimization

+ ησ2︸︷︷︸
noise

+ ∆2

µη2︸︷︷︸
drift

.

Asymptotic error and optimal step size: G := µE and same η? as before.

Thm (C-Drusvyatskiy-Harchaoui ’21): In the low drift-to-noise regime, a
step-decay schedule {ηt} ensures:

E[ϕt(x̂t)− ϕ?t ] . G after time t .
L

µ
log
(
ϕ0(x0)− ϕ?0

G

)
+ σ2

µG .

I Under light-tail assumptions, analogous guarantees hold with high
probability. Caveat: analysis is more complicated than for distance tracking.
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Thank you!

Further details are in the paper:

I “Stochastic optimization under time drift: iterate averaging, step decay, and
high probability guarantees”, https://arxiv.org/abs/2108.07356.
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