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Federated Learning

Federated learning (FL) “involves training statistical models over remote

devices or siloed data centers, such as mobile phones or hospitals, while

keeping data localized”. (Li et al. 2020)
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Introduction

A (countable) set T of classification (or regression) tasks which

represent the set of possible clients.

Data St = {s(i)
t , (x

(i)
t , y

(i)
t )}nti=1 at client t is drawn from a local

distribution Dt over X × Y.

Client t wants to learn hypothesis ht

minimize
ht∈H

LDt (ht) , E(x,y)∼Dt
[l (ht (x) , y)] .

Having personalized models for each client is a necessity in many FL

applications.
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Related Work

Model agnostic meta-learning (MAML) based federated multi-task

learning (MTL).

Clustered FL.

Model interpolation: APFL and MAPPER.

Federated MTL via task relationships: MOCHA, pFedMe, L2SGD and

FedU.

Limitation: restrictive assumptions or complex algorithms.
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An impossibility result

Some assumption on the local data distributions Dt , t ∈ T are needed for

federated learning to be beneficial:

Federated learning with T clients is equivalent to T semi-supervised

learning (SSL) problems.

With no assumptions on the data distribution, SSL is impossible.

(Ben-David et al. 2008; Darnstädt et al. 2013; Göpfert et al. 2019).
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Main assumption

Assumption

There exist M underlying (independent) distributions D̃m, 1 ≤ m ≤ M,

such that for t ∈ T , Dt is mixture of the distributions {D̃m}Mm=1 with

weights π∗t = [π∗t1, . . . , π
∗
tm] ∈ ∆M , i.e.

zt ∼M(π∗t ), ((xt , yt) |zt = m) ∼ D̃m, ∀t ∈ T , (1)

whereM(π) is a multinomial (categorical) distribution with parameters π.
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Generalizing Existing Frameworks

The generative model in the mixture assumption extends/covers some

popular multi-task/personalized FL formulations in the literature.

Example (Clustered Federated Learning)

The mixture assumption recovers this scenario considering M = C and

π∗tc = 1 if task (client) t is in cluster c and π∗tc = 0 otherwise.

15 / 39



Generalizing Existing Frameworks

The generative model in the mixture assumption extends/covers some

popular multi-task/personalized FL formulations in the literature.

Example (Clustered Federated Learning)

The mixture assumption recovers this scenario considering M = C and

π∗tc = 1 if task (client) t is in cluster c and π∗tc = 0 otherwise.

16 / 39



Main Contributions

Flexible assumption for personalized FL (mixtures of components).

EM-like learning algorithms with convergence guarantees (both in

client-server and fully-decentralized settings).

More general federated surrogate optimization framework.

Higher accuracy and fairness than SOTA algorithms, even for clients

not present at training time.
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Learning under a mixture model

Proposition (informal)

h∗t =
M∑

m=1

π̆tmhθ̆m , ∀t ∈ T (2)
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Learning under a mixture model

Estimate the parameters Θ̆ and π̆t , 1 ≤ t ≤ T , minimizing:

f (Θ,Π) , − log p(S1:T |Θ,Π)

n
, −1

n

T∑
t=1

nt∑
i=1

log p(s
(i)
t |Θ, πt), (3)

Use Eq. (4) to get the client predictor for the T clients present at

training time.

h∗t =
M∑

m=1

π̆tmhθ̆m (x) , ∀t ∈ T (4)
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Expectation-Maximization

A natural approach to solve problem (3) is via the

Expectation-Maximization (EM) algorithm

E-step: qk+1
t (z

(i)
t = m) ∝ πktm · exp

(
−l(hθkm(x

(i)
t ), y

(i)
t )
)
.

M-step: πk+1
tm =

∑nt
i=1 q

k+1
t (z

(i)
t = m)

nt
,

θk+1
m ∈ arg min

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t (z

(i)
t = m) · l

(
hθ(x

(i)
t ), y

(i)
t

)
.
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Federated Expectation-Maximization

25 / 39



Federated Expectation-Maximization

26 / 39



Federated Expectation-Maximization

27 / 39



Federated Expectation Maximization

Theorem

Under Assumptions 1–3 and some other mild assumptions, when clients
use SGD as local solver with learning rate η = a0√

K
, after a large enough

number of communication rounds K, FedEM’s iterates satisfy:

1

K

K∑
k=1

E
∥∥∥∇Θf

(
Θk ,Πk

)∥∥∥2

F
≤ O

(
1√
K

)
,

1

K

K∑
k=1

∆Πf (Θk ,Πk) ≤ O
(

1

K 3/4

)
,

where the expectation is over the random batches samples, and

∆Πf (Θk ,Πk) , f
(

Θk ,Πk
)
− f

(
Θk ,Πk+1

)
≥ 0.
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Fully Decentralized Settings

Theorem (Informal)

In the same setting of the previous theorem and under an additional mild

assumption on the connectivity of the communication graph, D-FedEM’s

individual estimates (Θk
t )1≤t≤T converge to a common value Θ̄k .

Moreover, Θ̄k and Πk converge to a stationary point of f .
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Surrogate Federated Optimization

FedEM can be seen as a particular instance of a more general

framework that we call federated surrogate optimization.

This framework minimizes an objective function
∑T

t=1 ωt ft (u, vt)

Each client t ∈ [T ] can compute a partial first order surrogate of ft .
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Experiments

Dataset Local FedAvg FedProx FedAvg+ clustered FL pFedMe FedEM (Ours)

FEMNIST 71.0 / 57.5 78.6 / 63.9 78.9 / 64.0 75.3 / 53.0 73.5 / 55.1 74.9 / 57.6 79.9 / 64.8

EMNIST 71.9 / 64.3 82.6 / 75.0 83.0 / 75.4 83.1 / 75.8 82.7 / 75.0 83.3 / 76.4 83.5 / 76.6

CIFAR10 70.2 / 48.7 78.2 / 72.4 78.0 / 70.8 82.3 / 70.6 78.6 / 71.2 81.7 / 73.6 84.3 / 78.1

CIFAR100 31.5 / 19.9 40.9 / 33.2 41.0 / 33.2 39.0 / 28.3 41.5 / 34.1 41.8 / 32.5 44.1 / 35.0

Shakespeare 32.0 / 16.6 46.7 / 42.8 45.7 / 41.9 40.0 / 25.5 46.6 / 42.7 41.2 / 36.8 46.7 / 43.0

Synthetic 65.7 / 58.4 68.2 / 58.9 68.2 / 59.0 68.9 / 60.2 69.1 / 59.0 69.2 / 61.2 74.7 / 66.7

Table: Test accuracy: average across clients / bottom decile.
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Experiments

Figure: Effect of client sampling rate on the test accuracy for CIFAR10.
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Experiments

Figure: Effect of number of mixture components M on the test accuracy
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Experiments

Dataset FedAvg FedAvg+ FedEM

FEMNIST 78.3 (80.9) 74.2 (84.2) 79.1 (81.5)

EMNIST 83.4 (82.7) 83.7 (92.9) 84.0 (83.3)

CIFAR10 77.3 (77.5) 80.4 (80.5) 85.9 (90.7)

CIFAR100 41.1 (42.1) 36.5 (55.3) 47.5 (46.6)

Shakespeare 46.7 (47.1) 40.2 (93.0) 46.7 (46.6)

Synthetic 68.6 (70.0) 69.1 (72.1) 73.0 (74.1)

Table: Average test accuracy across clients unseen at training (train accuracy
in parenthesis).
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Experiments

Table: Test accuracy comparison across different tasks. For each method, the
best test accuracy is reported. For FedEM we run only K

M rounds, where K is the
total number of rounds for other methods–K = 80 for Shakespeare and K = 200
for all other datasets–and M = 3 is the number of components used in FedEM.

Dataset Local FedAvg FedProx FedAvg+
Clustered

pFedMe
FedEM

FL (Ours)

FEMNIST 71.0 78.6 78.6 75.3 73.5 74.9 74.0

EMNIST 71.9 82.6 82.7 83.1 82.7 83.3 82.7

CIFAR10 70.2 78.2 78.0 82.3 78.6 81.7 82.5

CIFAR100 31.5 41.0 40.9 39.0 41.5 41.8 42.0

Shakespeare 32.0 46.7 45.7 40.0 46.6 41.2 43.8

Synthetic 65.7 68.2 68.2 68.9 69.1 69.2 73.2

36 / 39



Experiments

Figure: Effect of the number of samples on the average test accuracy across
clients unseen at training.
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Conclusion

Thank you for your attention

Project link: https://github.com/omarfoq/FedEM

Email: othmane.marfoq@inria.fr
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Data Does Provably Help”. In: STACS.
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