

Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

D.Khuê Lê-Huu Karteek Alahari

December 2021

(ロ)、(型)、(E)、(E)、(E)、(D)、(C) 2/18

Context and motivation

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

• Once a *highly-successful* paradigm for semantic segmentation.

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a highly-successful paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = - の < ○ 2/18

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a *highly-successful* paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).
- Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a highly-successful paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).

• Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a *highly-successful* paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).
- Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

1 Algorithmic: New algorithms & their connections to existing ones.

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a *highly-successful* paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).
- Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

1 Algorithmic: New algorithms & their connections to existing ones.

2 *Theoretical:* Unified convergence & tightness analysis.

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:

- Once a *highly-successful* paradigm for semantic segmentation.
- Used in most top-performing systems on PASCAL VOC (2011-2017).
- Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

- **1** Algorithmic: New algorithms & their connections to existing ones.
- **2** *Theoretical:* Unified convergence & tightness analysis.

Background on CRFs

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = ○ ○ ○ ○ 3/18

Given CNN output, CRF computes final prediction by *minimizing an energy*.

Background on CRFs

Given CNN output, CRF computes final prediction by *minimizing an energy*.

Background on CRFs

Given CNN output, CRF computes final prediction by *minimizing an energy*.

$$\min_{\mathbf{x}} E(\mathbf{x}) \triangleq \frac{1}{2} \mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{u}^{\top} \mathbf{x} \quad \text{s.t.} \quad \mathbf{x} \in \{0, 1\}^{nd}, 1^{\top} \mathbf{x}_{i} = 1 \quad \forall i \in \mathcal{V}.$$

Gaussian kernels CNN output one-hot encoding
(*n* pixels, *d* classes)

Energy minimization is also known as *MAP inference*.

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0, 1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_{i} = 1 \ \forall i \in \mathcal{V} \right\}.$$

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0,1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_i = 1 \ \forall i \in \mathcal{V} \right\}.$$

 \rightarrow Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = の < ○ 4/18

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0,1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_i = 1 \ \forall i \in \mathcal{V} \right\}.$$

 \rightarrow Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

 \rightarrow Frank-Wolfe method [Frank and Wolfe, 1956, Lê-Huu and Paragios, 2018]

$$\mathbf{p}^k \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^k), \mathbf{p} \right\rangle, \qquad \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k (\mathbf{p}^k - \mathbf{x}^k).$$

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0, 1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_i = 1 \ \forall i \in \mathcal{V} \right\}.$$

 \rightarrow Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

✓ Fast, differentiable, allowing CNN-CRF end-to-end training.✗ Weak in terms of energy minimization.

→ Frank-Wolfe method [Frank and Wolfe, 1956, Lê-Huu and Paragios, 2018]

$$\mathbf{p}^{k} \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^{k}), \mathbf{p} \right\rangle, \qquad \mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha_{k}(\mathbf{p}^{k} - \mathbf{x}^{k}).$$

<□> < @> < E> < E> E のQで 4/18

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0, 1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_i = 1 \ \forall i \in \mathcal{V} \right\}.$$

→ Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

Fast, differentiable, allowing CNN-CRF end-to-end training.
 Weak in terms of energy minimization.

→ Frank-Wolfe method [Frank and Wolfe, 1956, Lê-Huu and Paragios, 2018]

$$\mathbf{p}^k \in \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^k), \mathbf{p} \right\rangle, \qquad \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k (\mathbf{p}^k - \mathbf{x}^k).$$

Fast, stronger in terms of energy minimization.
 Backpropagation not possible.

(ロト (部) (目) (目) (目) (18)

Continuous relaxation:

$$\min_{\mathbf{x}} E(\mathbf{x}) \quad \text{s.t. } \mathbf{x} \in \mathcal{X} \triangleq \left\{ \mathbf{x} \in [0, 1]^{nd} : \mathbf{1}^{\top} \mathbf{x}_i = 1 \ \forall i \in \mathcal{V} \right\}.$$

→ Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

Fast, differentiable, allowing CNN-CRF end-to-end training.
 Weak in terms of energy minimization.

→ Frank-Wolfe method [Frank and Wolfe, 1956, Lê-Huu and Paragios, 2018]

$$\mathbf{p}^{k} \in \underset{\mathbf{p} \in \mathcal{X}}{\operatorname{argmin}} \left\langle \nabla E(\mathbf{x}^{k}), \mathbf{p} \right\rangle, \qquad \mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha_{k}(\mathbf{p}^{k} - \mathbf{x}^{k}).$$

✓ Fast, stronger in terms of energy minimization.
 ➢ Backpropagation not possible.

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

(ロ)、(型)、(E)、(E)、(E)、(D)、(C) 5/18

• Zero gradient:
$$\mathbf{p}^k \in \operatorname{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^k), \mathbf{p} \right\rangle$$
.

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

• Zero gradient:
$$\mathbf{p}^k \in \operatorname{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^k), \mathbf{p} \right\rangle$$
.

→ Replacing with *approximate updates*

$$\mathbf{p}^{k} \in \underset{\mathbf{p} \in \mathcal{X}}{\operatorname{argmin}} \left\{ \left\langle \nabla E(\mathbf{x}^{k}), \mathbf{p} \right\rangle + r(\mathbf{p}) \right\},$$
regularizer

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = ○ ○ ○ ○ 5/18

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

• Zero gradient:
$$\mathbf{p}^k \in \operatorname{argmin}_{\mathbf{p} \in \mathcal{X}} \left\langle \nabla E(\mathbf{x}^k), \mathbf{p} \right\rangle$$
.

→ Replacing with *approximate updates*

$$\mathbf{p}^{k} \in \underset{\mathbf{p} \in \mathcal{X}}{\operatorname{argmin}} \left\{ \left\langle \nabla E(\mathbf{x}^{k}), \mathbf{p} \right\rangle + r(\mathbf{p}) \right\},$$
regularizer

- \rightarrow With suitable regularizers:
 - \checkmark Fast, strong in terms of energy minimization.
 - ✓ Successful backpropagation.

We go further and propose an even more powerful algorithm!

(ロト (個) (目) (目) (目) (0) (0) (6/18)

We go further and propose an even more powerful algorithm!

(ロト (個) (目) (目) (目) (0) (0) (6/18)

O Choose
$$r, f, g$$
 such that $f + g = E + r + \delta_{\mathcal{X}}$.

We go further and propose an even more powerful algorithm!

- **1** Choose r, f, g such that $f + g = E + r + \delta_{\mathcal{X}}$.
- Iterate until convergence:

$$\mathbf{p}^k \in \operatorname*{argmin}_{\mathbf{p}} \left\{ \left\langle
abla f(\mathbf{x}^k), \mathbf{p} \right\rangle + g(\mathbf{p})
ight\}, \quad \mathbf{x}^{k+1} = \mathbf{x}^k + lpha_k (\mathbf{p}^k - \mathbf{x}^k).$$

(ロ) (母) (ヨ) (ヨ) (ヨ) (0,00 6/18)

We go further and propose an even more powerful algorithm!

- Choose r, f, g such that $f + g = E + r + \delta_{\mathcal{X}}$.
- Iterate until convergence:

$$\mathbf{p}^k \in \operatorname*{argmin}_{\mathbf{p}} \left\{ \left\langle
abla f(\mathbf{x}^k), \mathbf{p} \right\rangle + g(\mathbf{p})
ight\}, \quad \mathbf{x}^{k+1} = \mathbf{x}^k + lpha_k (\mathbf{p}^k - \mathbf{x}^k).$$

(ロ) (母) (ヨ) (ヨ) (ヨ) (0,00 6/18)

Sounding: convert **x** to a discrete solution.

We go further and propose an even more powerful algorithm!

O Choose
$$r, f, g$$
 such that $f + g = E + r + \delta_{\mathcal{X}}$.

Iterate until convergence:

$$\mathbf{p}^k \in \operatorname*{argmin}_{\mathbf{p}} \left\{ \left\langle
abla f(\mathbf{x}^k), \mathbf{p} \right\rangle + g(\mathbf{p}) \right\}, \quad \mathbf{x}^{k+1} = \mathbf{x}^k + lpha_k (\mathbf{p}^k - \mathbf{x}^k).$$

Bounding: convert **x** to a discrete solution.

known as generalized conditional gradient for minimizing f + g [Mine and Fukushima, 1981]

Why more powerful?

Why more powerful?

Flexibility in choosing r, f, g allows:

Easily obtaining new algorithms.

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = - の < ○ 7/18

Why more powerful?

Flexibility in choosing r, f, g allows:

- Easily obtaining new algorithms.
- Ø Making connections to existing ones.

Why more powerful?

Flexibility in choosing r, f, g allows:

- Easily obtaining new algorithms.
- Ø Making connections to existing ones.
- **③** Unifying theoretical analysis for all these old and new algorithms.

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = - の < ○ 7/18

Our method leads to *new algorithms* for MAP inference by simple instantiations!

(ロ)、(型)、(E)、(E)、(E)、(D)、(C) 8/18

Our method leads to *new algorithms* for MAP inference by simple instantiations!

• Euclidean Frank-Wolfe:

$$\mathbf{p}^{k} = \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\{ \left\langle \mathbf{P} \mathbf{x}^{k} + \mathbf{u}, \mathbf{p} \right\rangle + \frac{\lambda}{2} \|\mathbf{p}\|_{2}^{2} \right\} = \Pi_{\mathcal{X}} \left(-\frac{1}{\lambda} (\mathbf{P} \mathbf{x}^{k} + \mathbf{u}) \right).$$

Our method leads to *new algorithms* for MAP inference by simple instantiations!

• Euclidean Frank-Wolfe:

$$\mathbf{p}^{k} = \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\{ \left\langle \mathbf{P} \mathbf{x}^{k} + \mathbf{u}, \mathbf{p} \right\rangle + \frac{\lambda}{2} \|\mathbf{p}\|_{2}^{2} \right\} = \Pi_{\mathcal{X}} \left(-\frac{1}{\lambda} (\mathbf{P} \mathbf{x}^{k} + \mathbf{u}) \right).$$

• Entropic Frank-Wolfe:

$$\mathbf{p}^k = \operatorname*{argmin}_{\mathbf{p}\in\mathcal{X}} \left\{ \left\langle \mathbf{P}\mathbf{x}^k + \mathbf{u}, \mathbf{p} \right\rangle - \lambda \mathcal{H}(\mathbf{p})
ight\} = \operatorname{softmax} \left(-rac{1}{\lambda} (\mathbf{P}\mathbf{x}^k + \mathbf{u})
ight),$$

where $H(\mathbf{x}) = -\sum_{i,s} x_{is} \log x_{is}$ (entropy).

Our method leads to *new algorithms* for MAP inference by simple instantiations!

• Euclidean Frank-Wolfe:

$$\mathbf{p}^{k} = \operatorname*{argmin}_{\mathbf{p} \in \mathcal{X}} \left\{ \left\langle \mathbf{P} \mathbf{x}^{k} + \mathbf{u}, \mathbf{p} \right\rangle + \frac{\lambda}{2} \|\mathbf{p}\|_{2}^{2} \right\} = \Pi_{\mathcal{X}} \left(-\frac{1}{\lambda} (\mathbf{P} \mathbf{x}^{k} + \mathbf{u}) \right).$$

• Entropic Frank-Wolfe:

$$\mathbf{p}^k = \operatorname*{argmin}_{\mathbf{p}\in\mathcal{X}} \left\{ \left\langle \mathbf{P}\mathbf{x}^k + \mathbf{u}, \mathbf{p} \right\rangle - \lambda H(\mathbf{p})
ight\} = \operatorname{softmax} \left(-rac{1}{\lambda} (\mathbf{P}\mathbf{x}^k + \mathbf{u})
ight),$$

where $H(\mathbf{x}) = -\sum_{i,s} x_{is} \log x_{is}$ (entropy).

• Other variants: ℓ_p norm, lasso, binary entropy, etc.

Multiple existing algorithms are also special cases!

Multiple existing algorithms are also special cases!

• Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

(ロト (個) (目) (目) (目) (1000 9/18)
Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

• Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

• Concave-convex procedure (CCCP) [Yuille and Rangarajan, 2002]

$$-\nabla f(\mathbf{x}^k) \in \partial g(\mathbf{x}^{k+1}).$$

 \rightarrow CCCP-based CRF algorithms [Desmaison et al., 2016, Krähenbühl and Koltun, 2013] are instances of regularized Frank-Wolfe.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = のへで 9/18

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

• Parallel mean field [Krähenbühl and Koltun, 2011]

$$\mathbf{x}^{k+1} = \operatorname{softmax}(-\mathbf{P}\mathbf{x}^k - \mathbf{u}).$$

• Concave-convex procedure (CCCP) [Yuille and Rangarajan, 2002]

$$-\nabla f(\mathbf{x}^k) \in \partial g(\mathbf{x}^{k+1}).$$

- \rightarrow CCCP-based CRF algorithms [Desmaison et al., 2016, Krähenbühl and Koltun, 2013] are instances of regularized Frank-Wolfe.
- Vanilla Frank-Wolfe: Existing algorithms [Sontag and Jaakkola, 2007, Meshi et al., 2015, Tang et al., 2016, Desmaison et al., 2016, Lê-Huu and Paragios, 2018] are instances of regularized Frank-Wolfe.

Assumptions:

- f differentiable and L_f -semi-concave ($L_f \ge 0$).
- g proper, closed, and σ_g -strongly-convex ($\sigma_g \ge 0$).

Assumptions:

- f differentiable and L_f -semi-concave ($L_f \ge 0$).
- g proper, closed, and σ_g -strongly-convex ($\sigma_g \ge 0$).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

<□▶ < □▶ < □▶ < □▶ < □▶ = ○ ○ ○ ○ 10/18

Assumptions:

- f differentiable and L_f -semi-concave ($L_f \ge 0$).
- g proper, closed, and σ_g -strongly-convex ($\sigma_g \ge 0$).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

	constant stepsize	constant step length	non-summable	adaptive or
	$\alpha_k = \alpha > 0 \forall k$	$\alpha_k = \frac{\alpha}{\ \mathbf{p}^k - \mathbf{x}^k\ } \ \forall k$	$\sum_{k=0}^{+\infty} \alpha_k = \infty$	line search
convex g	$rac{\Delta_0}{lpha(k+1)} + rac{L_f \Omega^2 lpha}{2}$	$rac{\Delta_0\Omega}{lpha(k+1)}+rac{L_f\Omegalpha}{2}$	$\frac{\Delta_0 + \frac{L_f \Omega^2}{2} \sum_{i=0}^k \alpha_i^2}{\sum_{i=0}^k \alpha_i}$	$\max\bigl(\tfrac{2\Delta_0}{k+1}, \tfrac{\mu\Omega}{\sqrt{k+1}}\bigr)$
strongly	$\frac{\Delta_0}{\alpha(k+1)} + \eta(\alpha)\Omega^2 \forall \alpha \geq 2\omega$	$(\Delta_0 (L_f + \sigma_g)\alpha)^2$	$\Delta_{k(\omega)}$	Δ_0
convex g	$\frac{\Delta_0}{\rho(\alpha)(k+1)} \forall \alpha < 2\omega$	$\left(\frac{1}{\alpha\sqrt{2\sigma_g(k+1)}} + \frac{1}{2\sqrt{2\sigma_g}}\right)$	$\sum_{i=k(\omega)}^{k} \alpha_i$	$\overline{\omega(k+1)}$
concave f	$\frac{\Delta_0}{\alpha(k+1)}$	$rac{\Delta_0\Omega}{lpha(k+1)}$	$\frac{\Delta_0}{\sum_{i=0}^k \alpha_i}$	$\frac{2\Delta_0}{k+1}$

Assumptions:

- f differentiable and L_f -semi-concave ($L_f \ge 0$).
- g proper, closed, and σ_g -strongly-convex ($\sigma_g \ge 0$).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

	constant stepsize	constant step length	non-summable	adaptive or
	$\alpha_k = \alpha > 0 \forall k$	$\alpha_k = \frac{\alpha}{\ \mathbf{p}^k - \mathbf{x}^k\ } \ \forall k$	$\sum_{k=0}^{+\infty} \alpha_k = \infty$	line search
convex g	$rac{\Delta_0}{lpha(k+1)} + rac{L_f \Omega^2 lpha}{2}$	$rac{\Delta_0\Omega}{lpha(k+1)}+rac{L_f\Omegalpha}{2}$	$\frac{\Delta_0 + \frac{L_f \Omega^2}{2} \sum_{i=0}^k \alpha_i^2}{\sum_{i=0}^k \alpha_i}$	$\max\bigl(\frac{2\Delta_0}{k+1},\frac{\mu\Omega}{\sqrt{k+1}}\bigr)$
strongly	$\frac{\Delta_0}{\alpha(k+1)} + \eta(\alpha)\Omega^2 \forall \alpha \geq 2\omega$	$(\Delta_0 (L_f + \sigma_g)\alpha)^2$	$\Delta_{k(\omega)}$	Δ_0
convex g	$\frac{\Delta_0}{\rho(\alpha)(k+1)} \forall \alpha < 2\omega$	$\left(\frac{1}{\alpha\sqrt{2\sigma_g(k+1)}} + \frac{1}{2\sqrt{2\sigma_g}}\right)$	$\sum_{i=k(\omega)}^{k} \alpha_i$	$\overline{\omega(k+1)}$
concave f	$\frac{\Delta_0}{\alpha(k+1)}$	$rac{\Delta_0\Omega}{lpha(k+1)}$	$\frac{\Delta_0}{\sum_{i=0}^k \alpha_i}$	$\frac{2\Delta_0}{k+1}$

• Best rate of convergence: $\mathcal{O}(1/k)$.

Assumptions:

- f differentiable and L_f -semi-concave ($L_f \ge 0$).
- g proper, closed, and σ_g -strongly-convex ($\sigma_g \ge 0$).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

	constant stepsize	constant step length	non-summable	adaptive or
	$\alpha_k = \alpha > 0 \forall k$	$\alpha_k = \frac{\alpha}{\ \mathbf{p}^k - \mathbf{x}^k\ } \ \forall k$	$\sum_{k=0}^{+\infty} \alpha_k = \infty$	line search
convex g	$rac{\Delta_0}{lpha(k+1)} + rac{L_f \Omega^2 lpha}{2}$	$rac{\Delta_0\Omega}{lpha(k+1)}+rac{L_f\Omegalpha}{2}$	$\frac{\Delta_0 + \frac{L_f \Omega^2}{2} \sum_{i=0}^k \alpha_i^2}{\sum_{i=0}^k \alpha_i}$	$\max\bigl(\frac{2\Delta_0}{k+1},\frac{\mu\Omega}{\sqrt{k+1}}\bigr)$
strongly	$\frac{\Delta_0}{\alpha(k+1)} + \eta(\alpha)\Omega^2 \forall \alpha \geq 2\omega$	$(\Delta_0 (L_f + \sigma_g)\alpha)^2$	$\Delta_{k(\omega)}$	Δ_0
convex g	$\frac{\Delta_0}{\rho(\alpha)(k+1)} \forall \alpha < 2\omega$	$\left(\frac{1}{\alpha\sqrt{2\sigma_g}(k+1)} + \frac{1}{2\sqrt{2\sigma_g}}\right)$	$\sum_{i=k(\omega)}^{k} \alpha_i$	$\overline{\omega(k+1)}$
concave f	$\frac{\Delta_0}{\alpha(k+1)}$	$rac{\Delta_0\Omega}{lpha(k+1)}$	$\frac{\Delta_0}{\sum_{i=0}^k \alpha_i}$	$\frac{2\Delta_0}{k+1}$

• Best rate of convergence: $\mathcal{O}(1/k)$.

• Byproduct: convergent parallel mean field variants.

◆□▶ ◆■▶ ◆ ■▶ ◆ ■▶ → ■ - のへで 11/18

Tightness analysis

We were solving a *discrete* optimization problem through a (regularized) *continuous relaxation*. How good could the final discrete solution be?

Tightness analysis

We were solving a *discrete* optimization problem through a (regularized) *continuous relaxation*. How good could the final discrete solution be?

Main results: Upper bound on energy.

Tightness analysis

We were solving a *discrete* optimization problem through a (regularized) *continuous relaxation*. How good could the final discrete solution be?

Main results: Upper bound on energy.

$$E(\bar{\mathbf{x}}_r^*) \leq E^* + M - m + C,$$

where:

- $\bar{\mathbf{x}}_r^*$: discrete solution rounded from $\operatorname{argmin}_{\mathbf{x}\in\mathcal{X}} \{E(\mathbf{x}) + r(\mathbf{x})\}$.
- E*: minimum discrete energy.
- m, M: lower and upper bounds of r on \mathcal{X} .
- C: constant depending on selected rounding scheme.

Tightness analysis

We were solving a *discrete* optimization problem through a (regularized) *continuous relaxation*. How good could the final discrete solution be?

Main results: Upper bound on energy.

$$E(\bar{\mathbf{x}}_r^*) \leq E^* + M - m + C,$$

where:

- $\bar{\mathbf{x}}_r^*$: discrete solution rounded from $\operatorname{argmin}_{\mathbf{x}\in\mathcal{X}} \{E(\mathbf{x}) + r(\mathbf{x})\}$.
- E*: minimum discrete energy.
- m, M: lower and upper bounds of r on \mathcal{X} .
- C: constant depending on selected rounding scheme.

→ Recovering previous results as special cases [Berthod, 1982, Ravikumar and Lafferty, 2006, Lê-Huu and Paragios, 2018].

Experiments: Models and datasets

• Task: Semantic image segmentation.

Experiments: Models and datasets

- Task: Semantic image segmentation.
- Datasets: PASCAL VOC and Cityscapes.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ の ○ 12/18

Experiments: Models and datasets

- Task: Semantic image segmentation.
- Datasets: PASCAL VOC and Cityscapes.
- Models: Standard *CNN-CRF* with Gaussian potentials [Krähenbühl and Koltun, 2011, Zheng et al., 2015]. Use *DeepLabv3* [Chen et al., 2017] and *DeepLabv3+* [Chen et al., 2018] for CNN.

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ の ○ ○ 13/18

Experiments: Methods

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

• Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ < つへで 13/18

Experiments: Methods

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

- Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
- Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

- Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
- Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].
- Projected gradient (PGD) [Larsson et al., 2017, Lê-Huu and Paragios, 2018].

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ < つへで 13/18

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

- Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
- Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].
- Projected gradient (PGD) [Larsson et al., 2017, Lê-Huu and Paragios, 2018].

• Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

- Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
- Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].
- Projected gradient (PGD) [Larsson et al., 2017, Lê-Huu and Paragios, 2018].
- Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].
- Alternating direction method of multipliers (**ADMM**) [Lê-Huu and Paragios, 2017, 2018].

Euclidean Frank-Wolfe (ℓ_2 **FW**) and *Entropic Frank-Wolfe* (*e***FW**) against:

- Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
- Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].
- Projected gradient (PGD) [Larsson et al., 2017, Lê-Huu and Paragios, 2018].
- Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].
- Alternating direction method of multipliers (ADMM) [Lê-Huu and Paragios, 2017, 2018].

Exclusion due to poor performance:

- Convex vanilla Frank-Wolfe [Desmaison et al., 2016].
- Entropic mirror descent [Nemirovskij and Yudin, 1983, Beck and Teboulle, 2003].

No CRF learning in this experiment!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○ 14/18

Experiments: Inference performance

No CRF learning in this experiment!

- Use pre-trained DeepLabv3 and DeepLabv3+.
- Use *Potts model* for CRF.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○ 14/18

Experiments: Inference performance

No CRF learning in this experiment!

- Use pre-trained DeepLabv3 and DeepLabv3+.
- Use *Potts model* for CRF.

Average discrete energy on PASCAL VOC validation set:

No CRF learning in this experiment!

- Use pre-trained DeepLabv3 and DeepLabv3+.
- Use *Potts model* for CRF.

Average discrete energy on PASCAL VOC validation set:

Validation mloU using Potts dense CRF on top of pre-trained CNN

		CNN	PGD	PGM	ADMM	MF	FW	eFW _{.7}	eFW _{.3}	$\ell_2 FW$
ЭС	DeepLabv3	81.83	82.23	82.23	82.22	82.21	82.27	82.26	82.29	82.29
×	DeepLabv3+	82.89	83.36	83.37	83.38	83.45	83.43	83.45	83.48	83.50
Τ	DeepLabv3	76.73	76.88	76.86	76.95	76.97	76.86	76.99	76.99	77.03
	DeepLabv3+	79.55	79.64	79.63	79.66	79.63	79.64	79.65	79.66	79.66

Validation mloU using Potts dense CRF on top of pre-trained CNN

		CNN	PGD	PGM	ADMM	MF	FW	eFW _{.7}	eFW _{.3}	$\ell_2 FW$
ЭС	DeepLabv3	81.83	82.23	82.23	82.22	82.21	82.27	82.26	82.29	82.29
Š	DeepLabv3+	82.89	83.36	83.37	83.38	83.45	83.43	83.45	83.48	83.50
Ϋ́	DeepLabv3	76.73	76.88	76.86	76.95	76.97	76.86	76.99	76.99	77.03
D	DeepLabv3+	79.55	79.64	79.63	79.66	79.63	79.64	79.65	79.66	79.66

- Improvement of 0.1–0.6% by CRF over CNN.
- Similar performance between CRF solvers, $\ell_2 FW$ consistently best.

Joint training of CNN and CRF in this experiment!

Joint training of CNN and CRF in this experiment!

Training epochs

Joint training of CNN and CRF in this experiment!

Validation mloU under joint training

		CNN	PGD	PGM	ADMM	MF	eFW _{.7}	eFW _{.3}	$\ell_2 FW$
VOC	DeepLabv3	81.83	83.69 ±0.20	$\underset{\pm 0.23}{\textbf{83.75}}$	$\underset{\pm 0.06}{83.68}$	$\underset{\pm 0.10}{83.69}$	$\underset{\pm 0.10}{83.50}$	$\underset{\pm 0.20}{83.25}$	$\underset{\pm 0.13}{\textbf{83.75}}$
	DeepLabv3+	82.89	84.82 ±0.23	$\underset{\pm 0.20}{84.79}$	$\underset{\pm 0.06}{84.83}$	$\underset{\pm 0.17}{84.87}$	$\underset{\pm 0.23}{84.64}$	$\substack{84.50\\\pm0.16}$	$\underset{\pm 0.09}{\textbf{85.14}}$
CITY	DeepLabv3+	79.55	79.80	79.62	79.62	79.74	79.70	79.58	79.95

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 17/18

Validation mloU under joint training

		CNN	PGD	PGM	ADMM	MF	eFW _{.7}	eFW _{.3}	$\ell_2 FW$
VOC	DeepLabv3	81.83	$\underset{\pm 0.20}{83.69}$	$\underset{\pm 0.23}{\textbf{83.75}}$	$\underset{\pm 0.06}{83.68}$	$\underset{\pm 0.10}{83.69}$	$\underset{\pm 0.10}{83.50}$	$\underset{\pm 0.20}{83.25}$	$\underset{\pm 0.13}{\textbf{83.75}}$
	DeepLabv3+	82.89	84.82 ±0.23	$\underset{\pm 0.20}{84.79}$	$\underset{\pm 0.06}{84.83}$	$\underset{\pm 0.17}{84.87}$	$\underset{\pm 0.23}{84.64}$	$\substack{84.50\\\pm0.16}$	$\underset{\pm 0.09}{\textbf{85.14}}$
CITY	DeepLabv3+	79.55	79.80	79.62	79.62	79.74	79.70	79.58	79.95

- Joint training yields larger improvements by CRF over CNN: 1.9–2.3% on PASCAL VOC, 0.4% on Cityscapes.
- Again, $\ell_2 FW$ consistently best.

Conclusion

• Regularized Frank-Wolfe: General MAP inference method.

Conclusion

- Regularized Frank-Wolfe: General MAP inference method.
- This generalized perspective allows a unified analysis of many new and existing algorithms.

Conclusion

- Regularized Frank-Wolfe: General MAP inference method.
- This generalized perspective allows a unified analysis of many new and existing algorithms.

• ℓ_2 FW and *e*FW are two strong instances.

5. Conclusion

Conclusion

- Regularized Frank-Wolfe: General MAP inference method.
- This generalized perspective allows a unified analysis of many new and existing algorithms.

- ℓ_2 FW and *e*FW are two strong instances.
- Dense CRFs could still be relevant for semantic segmentation.
Conclusion

- Regularized Frank-Wolfe: General MAP inference method.
- This generalized perspective allows a unified analysis of many new and existing algorithms.
- ℓ_2 FW and *e*FW are two strong instances.
- Dense CRFs could still be relevant for semantic segmentation.

Thank you for your attention!

Please read our paper for more details. Code available at https://github.com/netw0rkf10w/CRF.