-3:{ M, -
NEURAL s

2. INFORMATION

’-f- PROCESSING LA —
o} 40 SYSTEMS

Regularized Frank-Wolfe for Dense CRFs:
Generalizing Mean Field and Beyond

P.Khué Lé-Huu Karteek Alahari
Inria

December 2021

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:

@ Once a highly-successful paradigm for semantic segmentation.

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.
e Used in most top-performing systems on PASCAL VOC (2011-2017).

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.
e Used in most top-performing systems on PASCAL VOC (2011-2017).
@ Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.
e Used in most top-performing systems on PASCAL VOC (2011-2017).
@ Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.
e Used in most top-performing systems on PASCAL VOC (2011-2017).
@ Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

@ Algorithmic: New algorithms & their connections to existing ones.

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.
e Used in most top-performing systems on PASCAL VOC (2011-2017).
@ Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!
@ Algorithmic: New algorithms & their connections to existing ones.

@ Theoretical: Unified convergence & tightness analysis.

1. Introduction 1.1. Context and motivation

Context and motivation

Dense conditional random fields (CRFs) [Krahenbiihl and Koltun, 2011]:
@ Once a highly-successful paradigm for semantic segmentation.

@ Used in most top-performing systems on PASCAL VOC (2011-2017).
@ Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!
@ Algorithmic: New algorithms & their connections to existing ones.
@ Theoretical: Unified convergence & tightness analysis.

© Practical: Encouraging results: 88.0 mloU on PASCAL VOC — dense
CRFs could still be relevant.

Background on CRFs

@

Given CNN output, CRF computes final prediction by minimizing an
energy.

Background on CRFs

@

Given CNN output, CRF computes final prediction by minimizing an
energy.

1
min E(x) £ 5xTPx +u'x st.xe{0,1}"1Tx;=1VieV.
. CNN output one-hot encoding
Gaussian kernels (n pixels, d classes)

Background on CRFs

@

Given CNN output, CRF computes final prediction by minimizing an
energy.

1
min E(x) £ 5xTPx +u'x st.xe{0,1}"1Tx;=1VieV.
) CNN output one-hot encoding
Gaussian kernels (n pixels, d classes)

Energy minimization is also known as MAP inference.

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

— Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

xk1 = softmax(—Px* — u).

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

— Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

xk1 = softmax(—Px* — u).

— Frank-Wolfe method [Frank and Wolfe, 1956, L&-Huu and Paragios, 2018]

pX € argmin <VE(xk), p> , x 1 = xk 4 ay(pk — x9).
peEX

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

— Parallel mean field [Krihenbiihl and Koltun, 2011]

xk1 = softmax(—Px* — u).

v Fast, differentiable, allowing CNN-CRF end-to-end training.
X Weak in terms of energy minimization.
— Frank-Wolfe method [Frank and Wolfe, 1956, L&-Huu and Paragios, 2018]

pX € argmin <VE(xk), p> , X = xk 4 ay (pk — xN).
peEX

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

— Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

xk1 = softmax(—Px* — u).

v Fast, differentiable, allowing CNN-CRF end-to-end training.
X Weak in terms of energy minimization.

— Frank-Wolfe method [Frank and Wolfe, 1956, L&-Huu and Paragios, 2018]

pX € argmin <VE(xk), p> , X = xk 4 ay (pk — xN).
peEX

v Fast, stronger in terms of energy minimization.
X Backpropagation not possible.

Solving MAP inference in dense CRFs

Continuous relaxation:

min E(x) st.xeXx = {x €0,1]:1Tx;=1Vie V}.

— Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

xk1 = softmax(—Px* — u).

v Fast, differentiable, allowing CNN-CRF end-to-end training.
X Weak in terms of energy minimization.

— Frank-Wolfe method [Frank and Wolfe, 1956, L&-Huu and Paragios, 2018]

p¥ € argmin <VE(xk), p> ,
peEX

Xk+1 — xk + Oék(Pk . Xk).

Differentiable a.e.

v Fast, stronger in terms of energy minimization. /i + the gradient is zero!

X Backpropagation not possible.

2. Contribution: Regularized Frank-Wolfe for inference 2.1. Proposed solution to zero-gradient issue

Simple remedy for Frank-Wolfe

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

2. Contribution: Regularized Frank-Wolfe for inference 2.1. Proposed solution to zero-gradient issue

Simple remedy for Frank-Wolfe

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

@ Zero gradient: p¥ € argming e x <VE(xk)7 p>.

2. Contribution: Regularized Frank-Wolfe for inference 2.1. Proposed solution to zero-gradient issue

Simple remedy for Frank-Wolfe

Our proposed solution to the zero-gradient issue of Frank-Wolfe.
@ Zero gradient: p¥ € argming e x <VE(xk)7 p>.

— Replacing with approximate updates

pX € argmin {<VE(xk), p> +r(p)})

peX /

regularizer

2. Contribution: Regularized Frank-Wolfe for inference 2.1. Proposed solution to zero-gradient issue

Simple remedy for Frank-Wolfe

Our proposed solution to the zero-gradient issue of Frank-Wolfe.
@ Zero gradient: p¥ € argming e x <VE(xk)7 p>.

— Replacing with approximate updates

pX € argmin {<VE(xk), p> +r(p)})

peX /

regularizer

— With suitable regularizers:
v’ Fast, strong in terms of energy minimization.
v’ Successful backpropagation.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

@ Choose r,f,gsuchthat f + g =E +r+dx.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

@ Choose r,f,gsuchthat f + g =E +r+dx.

@ lterate until convergence:

p* € argmin {(VF(x"),p) + g(p)}, *1=x*+au(p* —xX).
p

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

@ Choose r,f,gsuchthat f + g =E +r+dx.

@ lterate until convergence:
p* € argmin {(VF(x"),p) + g(p)}, *1=x*+au(p* —xX).
p

© Rounding: convert x to a discrete solution.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

@ Choose r,f,gsuchthat f + g =E +r+dx.

@ lterate until convergence:

p* € argmin {(VF(x"),p) + g(p)}, *1=x*+au(p* —xX).
p

© Rounding: convert x to a discrete solution.

known as generalized conditional gradient
for minimizing f + g [Mine and Fukushima, 1981]

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

Why more powerful?

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

Why more powerful?

Flexibility in choosing r, f, g allows:

© Easily obtaining new algorithms.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

Why more powerful?

Flexibility in choosing r, f, g allows:
© Easily obtaining new algorithms.

@ Making connections to existing ones.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

Why more powerful?

Flexibility in choosing r, f, g allows:
@ Easily obtaining new algorithms.
@ Making connections to existing ones.

© Unifying theoretical analysis for all these old and new algorithms.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Our method leads to new algorithms for MAP inference by simple
instantiations!

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Our method leads to new algorithms for MAP inference by simple
instantiations!

@ Euclidean Frank-Wolfe:

A 1
pX = argmin {<ka + u, p> +—]p”%} =My (—(ka + u)) :
PEX 2)\

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Our method leads to new algorithms for MAP inference by simple
instantiations!

@ Euclidean Frank-Wolfe:

A 1
pX = argmin {<ka + u, p> +—]p”%} =My (—(ka + u)) :
PEX 2)\

@ Entropic Frank-Wolfe:

1
pX = argmin {<ka + u, p> —)\H(p)} = softmax (—(ka + u)) ,
peX A

where H(x) = — 3, ; Xis log xis (entropy).

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Our method leads to new algorithms for MAP inference by simple
instantiations!

@ Euclidean Frank-Wolfe:

A 1
pX = argmin {<ka + u, p> +—]p”%} =My (—(ka + u)) :
PEX 2)\

@ Entropic Frank-Wolfe:

1
pX = argmin {<ka + u, p> —)\H(p)} = softmax (—(ka + u)) ,
peX A

where H(x) = — 3, ; Xis log xis (entropy).

o Other variants: £, norm, lasso, binary entropy, etc.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

@ Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

x1 = softmax(—Px* — u).

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

@ Parallel mean field [Krihenbiihl and Koltun, 2011]

k1 — softmax(—Px* — u).

X
e Concave-convex procedure (CCCP) [vuille and Rangarajan, 2002]
—VF(x¥) € ag(x*1).

— CCCP-based CRF algorithms [Desmaison et al., 2016, Krahenbiihl and
Koltun, 2013] are instances of regularized Frank-Wolfe.

2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

@ Parallel mean field [Krihenbiihl and Koltun, 2011]

k+1

x1 = softmax(—Px* — u).

e Concave-convex procedure (CCCP) [vuille and Rangarajan, 2002]
—VF(x¥) € ag(x*1).

— CCCP-based CRF algorithms [Desmaison et al., 2016, Krahenbiihl and
Koltun, 2013] are instances of regularized Frank-Wolfe.

o Vanilla Frank-Wolfe: Existing algorithms [Sontag and Jaakkola, 2007, Meshi
et al., 2015, Tang et al., 2016, Desmaison et al., 2016, Lé&-Huu and Paragios, 2018] are
instances of regularized Frank-Wolfe.

Convergence analysis

Assumptions:
e f differentiable and L¢-semi-concave (Lf > 0).

@ g proper, closed, and o,-strongly-convex (o4 > 0).

Convergence analysis

Assumptions:
e f differentiable and L¢-semi-concave (Lf > 0).

@ g proper, closed, and o,-strongly-convex (o4 > 0).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

Convergence analysis

Assumptions:
e f differentiable and L¢-semi-concave (Lf > 0).

@ g proper, closed, and o,-strongly-convex (o4 > 0).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

constant stepsize constant step length non-summable adaptive or
ax =a>0Vk g = To o Xk” Vk Z:"% Qg = 00 line search
Lfn 2
LfQZ B L% I D DY 280 10
convex g a(k+1) + a(k+1) + Ek a max(k+1, w/;(Jrl)
i=0
strongly m+ ()22 Ya>2w (Ao N (wag)a)z kAk(m) A
convex g W Va<w /205 (k+1) 2,/204 D k) w(k-+1)
Yy a9l Ao 25,
concave f a(ktT) a(keD) S o k1
i=0

Convergence analysis

Assumptions:
e f differentiable and L¢-semi-concave (Lf > 0).

@ g proper, closed, and o,-strongly-convex (o4 > 0).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

constant stepsize constant step length non-summable adaptive or
ax =a>0Vk g = To o Xk” Vk Z:"% Qg = 00 line search
Lfn 2
LfQZ B L% I D DY 280 10
convex g a(k+1) + a(k+1) + Ek a max(k+1, w/;(Jrl)
i=0
strongly m+ ()22 Ya>2w (Ao N (wag)a)z kAk(m) A
convex g W Va<w /205 (k+1) 2,/204 D k) w(k-+1)
Yy a9l Ao 25,
concave f a(ktT) a(keD) S o k1
i=0

@ Best rate of convergence: O(1/k).

Convergence analysis

Assumptions:
e f differentiable and L¢-semi-concave (Lf > 0).

@ g proper, closed, and o,-strongly-convex (o4 > 0).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

constant stepsize constant step length non-summable adaptive or
ax =a>0Vk g = To o Xk” Vk Z:"% Qg = 00 line search
Lfn 2
LfQZ B L% I D DY 280 10
convex g a(k+1) + a(k+1) + Ek a max(k+1, w/;(Jrl)
i=0
strongly m+ ()22 Ya>2w (Ao N (wag)a)z kAk(m) A
convex g W Va<w /205 (k+1) 2,/204 D k) w(k-+1)
Yy a9l Ao 25,
concave f a(ktT) a(keD) S o k1
i=0

@ Best rate of convergence: O(1/k).

@ Byproduct: convergent parallel mean field variants.

Tightness analysis

We were solving a discrete optimization problem through a (regularized)
continuous relaxation. How good could the final discrete solution be?

3. Theoretical analysis 3.2. Tightness of the relaxation

Tightness analysis

We were solving a discrete optimization problem through a (regularized)
continuous relaxation. How good could the final discrete solution be?

Main results: Upper bound on energy.

3. Theoretical analysis 3.2. Tightness of the relaxation

Tightness analysis

We were solving a discrete optimization problem through a (regularized)
continuous relaxation. How good could the final discrete solution be?

Main results: Upper bound on energy.

E(xX}))<E*"+M—-m+C,
where:
e X}: discrete solution rounded from argmin,y { E(x) + r(x)}.
@ E*: minimum discrete energy.
@ m, M: lower and upper bounds of r on X.

@ C: constant depending on selected rounding scheme.

3. Theoretical analysis 3.2. Tightness of the relaxation

Tightness analysis

We were solving a discrete optimization problem through a (regularized)
continuous relaxation. How good could the final discrete solution be?

Main results: Upper bound on energy.

E(xX}))<E*"+M—-m+C,
where:
e X}: discrete solution rounded from argmin,y { E(x) + r(x)}.
@ E*: minimum discrete energy.
@ m, M: lower and upper bounds of r on X.

@ C: constant depending on selected rounding scheme.

— Recovering previous results as special cases [Berthod, 1982, Ravikumar and
Lafferty, 2006, Lé-Huu and Paragios, 2018].

Experiments: Models and datasets

@ Task: Semantic image segmentation.

Experiments: Models and datasets

@ Task: Semantic image segmentation.
o Datasets: PASCAL VOC and Cityscapes.

Experiments: Models and datasets

@ Task: Semantic image segmentation.
o Datasets: PASCAL VOC and Cityscapes.
@ Models: Standard CNN-CRF with Gaussian potentials [Krahenbiihl and

Koltun, 2011, Zheng et al., 2015]. Use Deeplabv3 [Chen et al., 2017] and
Deeplabv3+ [Chen et al., 2018] for CNN.

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:

@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:
@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).

@ Nonconvex vanilla Frank-Wolfe (FW) [Lé-Huu and Paragios, 2018].

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:
@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).
@ Nonconvex vanilla Frank-Wolfe (FW) [Lé-Huu and Paragios, 2018].

@ Projected gradient (PGD) [Larsson et al., 2017, Lé&-Huu and Paragios, 2018].

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:
@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).
@ Nonconvex vanilla Frank-Wolfe (FW) [Lé-Huu and Paragios, 2018].
@ Projected gradient (PGD) [Larsson et al., 2017, Lé-Huu and Paragios, 2018].
@ Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:
@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).
@ Nonconvex vanilla Frank-Wolfe (FW) [Lé-Huu and Paragios, 2018].
@ Projected gradient (PGD) [Larsson et al., 2017, Lé-Huu and Paragios, 2018].
@ Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].
°

Alternating direction method of multipliers (ADMM) [Lé-Huu and
Paragios, 2017, 2018].

Experiments: Methods

Euclidean Frank-Wolfe (¢2FW) and Entropic Frank-Wolfe (eFW) against:
@ Mean field (MF) [Krahenbiihl and Koltun, 2011, 2013] (main baseline).
@ Nonconvex vanilla Frank-Wolfe (FW) [Lé-Huu and Paragios, 2018].
@ Projected gradient (PGD) [Larsson et al., 2017, Lé-Huu and Paragios, 2018].
@ Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].
°

Alternating direction method of multipliers (ADMM) [Lé-Huu and
Paragios, 2017, 2018].

Exclusion due to poor performance:
@ Convex vanilla Frank-Wolfe [Desmaison et al., 2016].

@ Entropic mirror descent [Nemirovskij and Yudin, 1983, Beck and Teboulle, 2003].

4. Experiments 4.2. Inference performance

Experiments: Inference performance

No CRF learning in this experiment!

4. Experiments 4.2. Inference performance

Experiments: Inference performance

No CRF learning in this experiment!
@ Use pre-trained DeeplLabv3 and Deeplabv3-+.
@ Use Potts model for CRF.

4. Experiments 4.2. Inference performance

Experiments: Inference performance

No CRF learning in this experiment!

@ Use pre-trained DeeplLabv3 and Deeplabv3-+.
@ Use Potts model for CRF.

Average discrete energy on PASCAL VOC validation set:
Discrete energy
1 1

—PGD

PGM =
— ADMM
— MF
— FW [
— eFWh—25
— 0FWy_y

x103

-1.8

-1.9

-21

T
5 10 15 20

CREF iterations

4. Experiments 4.2. Inference performance

Experiments: Inference performance

No CRF learning in this experiment!
@ Use pre-trained DeeplLabv3 and Deeplabv3-+.
@ Use Potts model for CRF.

Average discrete energy on PASCAL VOC validation set:

Discrete energy Discrete energy after 5 iterations
%103 I I «103 | I I I I
— PGD
-1.8 PGM —1.8
— ADMM /
—MF
-1.9 — FW —1.9 /
— eFWi—25
— loFWh—1 /
-2 2+ / /
21 —2.1+
T T T T T T T T T T
5 10 15 20 0 0.5 1 1.5 2 2.5

CRF iterations Regularization weight A

4. Experiments 4.2. Inference performance

Experiments: Inference performance

Validation mloU using Potts dense CRF on top of pre-trained CNN

| CNN | PGD PGM ADMM MF FW eFW; eFWs (,FW
Q Deeplabv3 |81.83 | 8223 8223 8222 8221 8227 8226 8229 8229
> Deeplabv3+ | 82.89 | 83.36 83.37 83.38 8345 8343 83.45 8348 83.50
> Deeplabv3 [76.73 | 76.88 76.86 76.95 76.97 76.86 76.99 76.99 77.03
O Deeplabv3+ | 79.55 | 79.64 79.63 79.66 79.63 79.64 79.65 79.66 79.66

4. Experiments 4.2. Inference performance

Experiments: Inference performance

Validation mloU using Potts dense CRF on top of pre-trained CNN

| CNN | PGD PGM ADMM MF FW eFW; eFWs (,FW
Q Deeplabv3 |81.83 | 8223 8223 8222 8221 8227 8226 8229 8229
> Deeplabv3+ | 82.89 | 83.36 83.37 83.38 8345 8343 83.45 8348 83.50
> Deeplabv3 [76.73 | 76.88 76.86 76.95 76.97 76.86 76.99 76.99 77.03
O Deeplabv3+ | 79.55 | 79.64 79.63 79.66 79.63 79.64 79.65 79.66 79.66

@ Improvement of 0.1-0.6% by CRF over CNN.

@ Similar performance between CRF solvers, /> FW consistently best.

Experiments: Learning performance

Joint training of CNN and CRF in this experiment!

Experiments: Learning performance

Joint training of CNN and CRF in this experiment!

Validation mloU on PASCAL VOC

83.65
83.60
— /_-
83.55 1 -~ -\ —
83.50 | PGM
— ADMM
83.45 — MF
—FW
83.40 7 --- FW (Adam)
83.35 — LFWA=
T T T T
0 5 10 15

Training epochs

Experiments: Learning performance

Joint training of CNN and CRF in this experiment!

Validation mloU on PASCAL VOC

83.65

83.60

N
— PGD
PGM
— ADMM
— MF
— FW
=== FW (Adam)
— lHFWy—1

83.55 1 - /- N\
7

T T T
5 10 15
Training epochs

Vanilla FW fails to learn
(zero-gradient issue)

Experiments: Learning performance

Validation mloU under joint training

| CNN | PGD PGM ADMM MF eFW7; eFW3 (FW

Deeplabv3 ‘ 81.83 ‘ 8369 8375 8368 8360 8350 8325 8375

VOC £020 #0223 006 £0.10 +£010 4020 +0.13
DeepLabv3+ ‘ 82.89 ‘ 8482 8479 8483 8487 8464 8450 8514

£0.23 £0.20 +0.06 £0.17 £0.23 +0.16 +0.09

CITY Deeplabv3+ | 79.55 | 79.80 79.62 79.62 79.74 79.70 79.58 79.95

Experiments: Learning performance

Validation mloU under joint training

| CNN | PGD PGM ADMM MF eFW7; eFW3 (FW

DeepLabv3 ‘81.83‘83.69 83.75 8368 83.69 8350 8325 83.75
+020 +0.23 £0.06 +0.10 +0.10 +0.20 +0.13

DeepLabv3+‘82.89‘84.82 84.79 84.83 84.87 84.64 8450 85.14
+0.23 40.20 +0.06 +017 +023 +0.16 +0.09

CITY Deeplabv3+ | 79.55 | 79.80 79.62 79.62 79.74 79.70 79.58 79.95

VOC

@ Joint training yields larger improvements by CRF over CNN: 1.9-2.3%
on PASCAL VOC, 0.4% on Cityscapes.

o Again, /o, FW consistently best.

5. Conclusion

Conclusion

@ Regularized Frank-Wolfe: General MAP inference method.

https://github.com/netw0rkf10w/CRF

5. Conclusion

Conclusion

@ Regularized Frank-Wolfe: General MAP inference method.

@ This generalized perspective allows a unified analysis of many new
and existing algorithms.

https://github.com/netw0rkf10w/CRF

5. Conclusion

Conclusion

@ Regularized Frank-Wolfe: General MAP inference method.

@ This generalized perspective allows a unified analysis of many new
and existing algorithms.

@ /HFW and eFW are two strong instances.

https://github.com/netw0rkf10w/CRF

5. Conclusion

Conclusion

@ Regularized Frank-Wolfe: General MAP inference method.

@ This generalized perspective allows a unified analysis of many new
and existing algorithms.

@ /HFW and eFW are two strong instances.

@ Dense CRFs could still be relevant for semantic segmentation.

https://github.com/netw0rkf10w/CRF

5. Conclusion

Conclusion

@ Regularized Frank-Wolfe: General MAP inference method.

@ This generalized perspective allows a unified analysis of many new
and existing algorithms.

@ /HFW and eFW are two strong instances.

@ Dense CRFs could still be relevant for semantic segmentation.

Thank you for your attention!

Please read our paper for more details.

Code available at https://github.com/netwOrkf10w/CRF.

https://github.com/netw0rkf10w/CRF

	Introduction
	Context and motivation
	Background on CRFs

	Contribution: Regularized Frank-Wolfe for inference
	Proposed solution to zero-gradient issue
	General regularized Frank-Wolfe

	Theoretical analysis
	Convergence
	Tightness of the relaxation

	Experiments
	Experimental setup
	Inference performance
	Learning performance

	Conclusion

