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1. Introduction 1.1. Context and motivation

Context and motivation

Dense conditional random fields (CRFs) [Krähenbühl and Koltun, 2011]:
Once a highly-successful paradigm for semantic segmentation.

Used in most top-performing systems on PASCAL VOC (2011-2017).
Fell out of favor since 2017 [Lin et al., 2017] as CNNs got stronger.

We revisit dense CRFs with several contributions!

1 Algorithmic: New algorithms & their connections to existing ones.
2 Theoretical: Unified convergence & tightness analysis.
3 Practical: Encouraging results: 88.0 mIoU on PASCAL VOC → dense

CRFs could still be relevant.
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1. Introduction 1.2. Background on CRFs

Background on CRFs

Given CNN output, CRF computes final prediction by minimizing an
energy.

min
x

E (x) , 1
2x
>Px + u>x s.t. x ∈ {0, 1}nd , 1>xi = 1 ∀i ∈ V.

Gaussian kernels CNN output one-hot encoding
(n pixels, d classes)

Energy minimization is also known as MAP inference.
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1. Introduction 1.2. Background on CRFs

Solving MAP inference in dense CRFs
Continuous relaxation:

min
x

E (x) s.t. x ∈ X ,
{
x ∈ [0, 1]nd : 1>xi = 1 ∀i ∈ V

}
.

→ Parallel mean field [Krähenbühl and Koltun, 2011]

xk+1 = softmax(−Pxk − u).

3 Fast, differentiable, allowing CNN-CRF end-to-end training.
7 Weak in terms of energy minimization.

→ Frank-Wolfe method [Frank and Wolfe, 1956, Lê-Huu and Paragios, 2018]

pk ∈ argmin
p∈X

〈
∇E (xk),p

〉
, xk+1 = xk + αk(pk − xk).

3 Fast, stronger in terms of energy minimization.
7 Backpropagation not possible.

Differentiable a.e.
but the gradient is zero!
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2. Contribution: Regularized Frank-Wolfe for inference 2.1. Proposed solution to zero-gradient issue

Simple remedy for Frank-Wolfe

Our proposed solution to the zero-gradient issue of Frank-Wolfe.

Zero gradient: pk ∈ argminp∈X
〈
∇E (xk),p

〉
.

→ Replacing with approximate updates

pk ∈ argmin
p∈X

{〈
∇E (xk),p

〉
+r(p)

}
,

→ With suitable regularizers:
3 Fast, strong in terms of energy minimization.
3 Successful backpropagation.

regularizer
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2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

We go further and propose an even more powerful algorithm!

1 Choose r , f , g such that f + g = E + r + δX .
2 Iterate until convergence:

pk ∈ argmin
p

{〈
∇f (xk),p

〉
+ g(p)

}
, xk+1 = xk + αk(pk − xk).

3 Rounding: convert x to a discrete solution.

known as generalized conditional gradient
for minimizing f + g [Mine and Fukushima, 1981]
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2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

General regularized Frank-Wolfe for MAP inference

Why more powerful?

Flexibility in choosing r , f , g allows:
1 Easily obtaining new algorithms.
2 Making connections to existing ones.
3 Unifying theoretical analysis for all these old and new algorithms.
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2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Our method leads to new algorithms for MAP inference by simple
instantiations!

Euclidean Frank-Wolfe:

pk = argmin
p∈X

{〈
Pxk + u,p

〉
+λ

2 ‖p‖
2
2

}
= ΠX

(
− 1
λ

(Pxk + u)
)
.

Entropic Frank-Wolfe:

pk = argmin
p∈X

{〈
Pxk + u,p

〉
−λH(p)

}
= softmax

(
− 1
λ

(Pxk + u)
)
,

where H(x) = −
∑

i ,s xis log xis (entropy).
Other variants: `p norm, lasso, binary entropy, etc.
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2. Contribution: Regularized Frank-Wolfe for inference 2.2. General regularized Frank-Wolfe

Instantiations of regularized Frank-Wolfe

Multiple existing algorithms are also special cases!

Parallel mean field [Krähenbühl and Koltun, 2011]

xk+1 = softmax(−Pxk − u).

Concave-convex procedure (CCCP) [Yuille and Rangarajan, 2002]

−∇f (xk) ∈ ∂g(xk+1).

→ CCCP-based CRF algorithms [Desmaison et al., 2016, Krähenbühl and
Koltun, 2013] are instances of regularized Frank-Wolfe.
Vanilla Frank-Wolfe: Existing algorithms [Sontag and Jaakkola, 2007, Meshi
et al., 2015, Tang et al., 2016, Desmaison et al., 2016, Lê-Huu and Paragios, 2018] are
instances of regularized Frank-Wolfe.
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3. Theoretical analysis 3.1. Convergence

Convergence analysis

Assumptions:
f differentiable and Lf -semi-concave (Lf ≥ 0).
g proper, closed, and σg -strongly-convex (σg ≥ 0).

Main results: Upper bound on conditional gradient norm [Beck, 2017].

constant stepsize constant step length non-summable adaptive or
line searchαk = α > 0 ∀k αk = α

‖pk−xk‖ ∀k
∑+∞

k=0 αk =∞

convex g ∆0
α(k+1) + Lf Ω2α

2
∆0Ω
α(k+1) + Lf Ωα

2
∆0+ Lf Ω2

2
∑k

i=0 α
2
i∑k

i=0 αi
max
( 2∆0
k+1 ,

µΩ√
k+1

)
strongly
convex g

∆0
α(k+1) + η(α)Ω2 ∀α≥2ω

∆0
ρ(α)(k+1) ∀α<2ω

(
∆0

α
√

2σg (k+1)
+ (Lf +σg )α

2
√

2σg

)2 ∆k(ω)∑k
i=k(ω) αi

∆0
ω(k+1)

concave f ∆0
α(k+1)

∆0Ω
α(k+1)

∆0∑k
i=0 αi

2∆0
k+1

Best rate of convergence: O(1/k).
Byproduct: convergent parallel mean field variants.
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3. Theoretical analysis 3.2. Tightness of the relaxation

Tightness analysis

We were solving a discrete optimization problem through a (regularized)
continuous relaxation. How good could the final discrete solution be?

Main results: Upper bound on energy.

E (x̄∗r ) ≤ E ∗ + M −m + C ,

where:
x̄∗r : discrete solution rounded from argminx∈X {E (x) + r(x)}.
E ∗: minimum discrete energy.
m,M: lower and upper bounds of r on X .
C : constant depending on selected rounding scheme.

→ Recovering previous results as special cases [Berthod, 1982, Ravikumar and
Lafferty, 2006, Lê-Huu and Paragios, 2018].
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4. Experiments 4.1. Experimental setup

Experiments: Models and datasets

Task: Semantic image segmentation.

Datasets: PASCAL VOC and Cityscapes.
Models: Standard CNN-CRF with Gaussian potentials [Krähenbühl and
Koltun, 2011, Zheng et al., 2015]. Use DeepLabv3 [Chen et al., 2017] and
DeepLabv3+ [Chen et al., 2018] for CNN.
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Experiments: Methods

Euclidean Frank-Wolfe (`2FW) and Entropic Frank-Wolfe (eFW) against:

Mean field (MF) [Krähenbühl and Koltun, 2011, 2013] (main baseline).
Nonconvex vanilla Frank-Wolfe (FW) [Lê-Huu and Paragios, 2018].
Projected gradient (PGD) [Larsson et al., 2017, Lê-Huu and Paragios, 2018].
Fast proximal gradient method (PGM) [Beck and Teboulle, 2009].
Alternating direction method of multipliers (ADMM) [Lê-Huu and
Paragios, 2017, 2018].

Exclusion due to poor performance:
Convex vanilla Frank-Wolfe [Desmaison et al., 2016].
Entropic mirror descent [Nemirovskij and Yudin, 1983, Beck and Teboulle, 2003].
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4. Experiments 4.2. Inference performance

Experiments: Inference performance

No CRF learning in this experiment!

Use pre-trained DeepLabv3 and DeepLabv3+.
Use Potts model for CRF.

Average discrete energy on PASCAL VOC validation set:
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4. Experiments 4.2. Inference performance

Experiments: Inference performance

Validation mIoU using Potts dense CRF on top of pre-trained CNN

CNN PGD PGM ADMM MF FW eFW.7 eFW.3 `2FW

VO
C DeepLabv3 81.83 82.23 82.23 82.22 82.21 82.27 82.26 82.29 82.29

DeepLabv3+ 82.89 83.36 83.37 83.38 83.45 83.43 83.45 83.48 83.50

CI
TY DeepLabv3 76.73 76.88 76.86 76.95 76.97 76.86 76.99 76.99 77.03

DeepLabv3+ 79.55 79.64 79.63 79.66 79.63 79.64 79.65 79.66 79.66

Improvement of 0.1–0.6% by CRF over CNN.
Similar performance between CRF solvers, `2FW consistently best.
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4. Experiments 4.3. Learning performance

Experiments: Learning performance

Joint training of CNN and CRF in this experiment!

Validation mIoU on PASCAL VOC
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(zero-gradient issue)
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4. Experiments 4.3. Learning performance

Experiments: Learning performance

Validation mIoU under joint training

CNN PGD PGM ADMM MF eFW.7 eFW.3 `2FW

VOC DeepLabv3 81.83 83.69
±0.20

83.75
±0.23

83.68
±0.06

83.69
±0.10

83.50
±0.10

83.25
±0.20

83.75
±0.13

DeepLabv3+ 82.89 84.82
±0.23

84.79
±0.20

84.83
±0.06

84.87
±0.17

84.64
±0.23

84.50
±0.16

85.14
±0.09

CITY DeepLabv3+ 79.55 79.80 79.62 79.62 79.74 79.70 79.58 79.95

Joint training yields larger improvements by CRF over CNN: 1.9–2.3%
on PASCAL VOC, 0.4% on Cityscapes.
Again, `2FW consistently best.
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5. Conclusion

Conclusion

Regularized Frank-Wolfe: General MAP inference method.

This generalized perspective allows a unified analysis of many new
and existing algorithms.
`2FW and eFW are two strong instances.
Dense CRFs could still be relevant for semantic segmentation.

Thank you for your attention!

Please read our paper for more details.

Code available at https://github.com/netw0rkf10w/CRF.

https://github.com/netw0rkf10w/CRF
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