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What is this work about?

• Distributed training over the Internet is possible!

• We develop a practical solution for decentralized DL

• Propose an algorithm that adapts to the infrastructure

• Report the first large-scale collaborative training run
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• Transfer learning is bread and butter of modern DL

• Pretraining requires lots of resources and time

• Doing this from scratch is often infeasible without $$$

• What if we could train neural networks together?
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…and how DeDLOC resolves them

Peers can join and leave at 
random


Heterogeneous hardware 
and network

Gradient accumulation  
over entire collaboration


Averaging strategy that adapts 
to the participants



DeDLOC: core concepts
• Train on very large batches


• Accumulate gradients over all peers

• If somebody disconnects, others 

will compensate for that
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Adaptive averaging
• Each peer has different network speed and compute performance

• Formulate throughput optimization as an LP problem

• In special cases, we recover well-known algorithms!

Uniform All-Reduce One fast peer Parameter Server Heterogeneous Hybrid
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Training under NAT

• Household PCs often don’t have dedicated IP addresses

• NAT makes it harder to establish peer-to-peer connections

• We employ NAT traversal techniques to resolve those issues!



Experiments: adaptivity

• Pretrain ResNet-50 SwAV in different environments


• Succesfully utilize low-performance peers even together with others
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HYBRID Server: 8 workers with 1xV100,  1Gb/s network 

Workstation: 16 workers with 1x1080Ti, 200Mb/s network



Experiments: network performance

• Pretrain ALBERT on T4 nodes with different network speeds


• Load balancing, CPU-only and part-time peers help significantly!



Experiments: sahajBERT
• We pretrained ALBERT for Bengali together with volunteers!


• 40 people joined the experiment from 91 unique devices


• Median participation time of 1.5 days



sahajBERT: results

• The model converged in ~8 days


• Outperforms very strong baselines, both cross-lingual and Bengali-only



Conclusion
• We propose a practical method for collaborative training!


• Learn more:

Code

github.com/yandex-research/DeDLOChuggingface.co/blog/collaborative-training

Blog postPaper

arxiv.org/abs/2106.10207


