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Summary

Theoretically analyze classification evaluation measures
Formally define desirable properties and check them for each measure
Impossibility theorem: three important properties cannot be simultaneously satisfied
Propose new measures that satisfy all desirable properties except one
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Notation

Assume that we are given a true labeling and a predicted labeling of some elements

n — number of elements
m — number of classes
C — confusion matrix
cij — the number of elements with true label i and predicted label j
ai =

∑m
j=1 cij — size of i-th class in the true labeling

bi =
∑m

j=1 cji — size of i-th class in the predicted labeling
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Commonly used evaluation measures

Binary Multiclass

F-measure (Fβ)
(1+β2)·c11

(1+β2)·c11+β2·c10+c01
—

Jaccard (J) c11
c11+c10+c01

—

Matthews Coefficient (CC) c11c00−c01c10√
b1·a1·b0·a0

n
∑m

i=1 cii−
∑m

i=1 biai√
(n2−

∑m
i=1 b2

i )(n2−
∑m

i=1 a2
i )

Accuracy (Acc)
∑m

i=1 cii
n

Balanced Accuracy (BA) 1
m

∑m
i=1

cii
ai

Cohen’s Kappa (κ)
∑m

i=1 cii− 1
n

∑m
i=1 aibi

n− 1
n

∑m
i=1 aibi

Confusion Entropy (CE) see the paper
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Averaging

Micro averaging
Sum up binary confusion matrices corresponding to m one-vs-all classifications.

Macro averaging
Average the values of a measure for m one-vs-all classifications.

Weighted averaging
Average the values of a measure for m one-vs-all classifications with weights proportional to the
class-sizes.
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Are the measures consistent?

Table: Ranking algorithms according to different measures on SST-5: from 1 (best) to 7 (worst)

Acc BA κ CE F1 CC

Flair+ELMo 1 1 1 1 1 1
Flair+BERT 2 4 2 2 5 2
Svm 3 3 3 5 3 3
Logistic 4 5 5 3 4 5
FastText 5 2 4 6 2 4
VADER 6 6 6 7 6 6
TextBlob 7 7 7 4 7 7
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Gösgens, Zhiyanov, Tikhonov, Prokhorenkova Classification Measures NeurIPS 2021



Are the measures consistent?

Table: Ranking algorithms according to different measures on SST-5: from 1 (best) to 7 (worst)

Acc BA κ CE F1 CC

Flair+ELMo 1 1 1 1 1 1
Flair+BERT 2 4 2 2 5 2
Svm 3 3 3 5 3 3
Logistic 4 5 5 3 4 5
FastText 5 2 4 6 2 4
VADER 6 6 6 7 6 6
TextBlob 7 7 7 4 7 7
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Are the measures consistent?

Inconsistency of top results on ImageNet:
Take top-10 methods in the leaderboard (based on accuracy)
Rank them according to other measures
Observe that rankings differ
Thus, the problem exists even for balanced data
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Are the measures consistent?

Table: Inconsistency on weather forecasting data (precipitation prediction), %

Acc BA κ CE F1 CC

Acc — 96.57 37.69 3.15 41.02 44.35
BA — 58.89 99.72 55.56 52.22
κ — 40.83 3.33 6.67
CE — 44.17 47.50
F1 — 3.43
CC —
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How to choose a suitable measure?

Theoretical approach:
Formally define a list of desirable properties
Check the properties for each measure
Obtain recommendations on which measures are more appropriate than others
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Properties

Maximal agreement
The measure has an upper bound cmax that is only achieved when the labelings are identical.

Minimal agreement
The measure has a lower bound cmin that is only achieved when cii = 0 for all i .

Symmetry

M(C) = M(CT ) for all C — symmetry w.r.t. interchanging labelings.

Class symmetry
Symmetry w.r.t. interchanging classes.
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Properties

Table: Properties of measures (binary/multiclass) and averagings

Measure Max Min CSym Sym Dist Mon SMon CB ACB
F1 (binary) 3 7 7 3 7 3 7 7 7
J (binary) 3 7 7 3 3 3 7 7 7
CC 3 3/7 3 3 7 3 3/7 3 3
Acc 3 3 3 3 3 3 3 7 7
BA 3 3 3 7 7 3 3 3 3
κ 3 7 3 3 7 3 7 3 3
CE 3 7 3 3 7 7 7 7 7

Preserving properties by various averaging types
Micro 3 7 3 3 3 3 7 7 7
Macro 3 7 3 3 3 3 7 3 3
Weighted 3 7 3 7 7 3 7 3 3
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Properties: monotonicity

Monotonicity
The value of a measure increases if we change one incorrect label to a correct label.

Strong monotonicity
The value of a measure increases if we either increase a diagonal entry or decrease an
off-diagonal entry of C.
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Properties: constant baseline

Constant baseline (CB)
If predicted labels are random with probabilities p1, . . . , pm, then the expected value of the
measure is a constant cbase that does not depend on these probabilities.

Approximate constant baseline (ACB)
Filling in the expected value cij = aipj for each entry of the confusion matrix, should make the
measure equal to a constant cbase that does not depend on p1, . . . , pm.
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Properties: distance

Distance
A measure can be linearly transformed to a metric distance.

The following has to be satisfied for d(A,B) = cmax −M(A,B):
Positive-definiteness ⇔ maximum agreement property
Symmetry ⇔ symmetry property
Triangle inequality: d(A,C ) ≤ d(A,B) + d(B,C )
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Impossibility result

Impossibility Theorem
For binary classification, there exists no measure that satisfies all of the three properties

1 Monotonicity
2 Constant baseline
3 Distance

Several options for getting around this impossibility:

Discarding monotonicity is undesirable
Loosening constant baseline to approximate constant baseline
Discarding distance
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Loosening CB to ACB: Correlation Distance

The Correlation Distance (CD) is the arccosine of Matthews coefficient:

CD =
1
π
arccos(CC)

Correlation Distance
CD satisfies all properties excluding CB, but including ACB.
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Discarding distance

Matthews Correlation Coefficient
CC satisfies all properties except for being a distance (only in the binary case).

Define Symmetric Balanced Accuracy: SBA = 1
2m

m∑
i=1

(
cii
ai
+ cii

bi

)
Symmetric Balanced Accuracy
SBA satisfies all properties except for being a distance (even for the multiclass case).
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Discarding distance: Generalized Means Measure

Axiomization
All binary measures that satisfy all properties except distance must be of the form

M = s

(
a0a1

n2 ,
b0b1

n2

)
· c11n − a1b1

n2 ,

where the normalization factor s(a, b) needs to satisfy some additional properties.

One interesting option is normalizing by the generalized mean s(a, b)−1 = (1
2a

r + 1
2b

r )1/r

This Generalized Means (GMr ) measure coincides with CC for r → 0
For r = −1, it coincides with SBA
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Properties

Table: Properties of measures (binary/multiclass) and averagings

Measure Max Min CSym Sym Dist Mon SMon CB ACB
F1 (binary) 3 7 7 3 7 3 7 7 7
J (binary) 3 7 7 3 3 3 7 7 7
CC 3 3/7 3 3 7 3 3/7 3 3
Acc 3 3 3 3 3 3 3 7 7
BA 3 3 3 7 7 3 3 3 3
κ 3 7 3 3 7 3 7 3 3
CE 3 7 3 3 7 7 7 7 7

SBA 3 3 3 3 7 3 3 3 3
GM (binary) 3 3 3 3 7 3 3 3 3
CD 3 3/7 3 3 3 3 3/7 7 3

Preserving properties by various averaging types
Micro 3 7 3 3 3 3 7 7 7
Macro 3 7 3 3 3 3 7 3 3
Weighted 3 7 3 7 7 3 7 3 3
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Inconsistency of measures for small n

Fix small n
Check all pairs of non-degenerate labelings
Find inconsistencies: M1(A,B1) ≥ M1(A,B2) but M2(A,B1) < M2(A,B2)

n = 2: cannot distinguish [Acc, BA, F1, κ, CE, CC, SBA, GM1]
n = 3: cannot distinguish [Acc, BA, κ, CC, SBA, GM1]
n ∈ {4, 5}: cannot distinguish [BA, κ, CC, SBA, GM1]
n ∈ {6, 7}: cannot distinguish [CC, SBA, GM1]
n = 8: cannot distinguish [CC, SBA]
n ≥ 9: can distinguish all measures
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Fix small n
Check all pairs of non-degenerate labelings
Find inconsistencies: M1(A,B1) ≥ M1(A,B2) but M2(A,B1) < M2(A,B2)

n = 2: cannot distinguish [Acc, BA, F1, κ, CE, CC, SBA, GM1]
n = 3: cannot distinguish [Acc, BA, κ, CC, SBA, GM1]
n ∈ {4, 5}: cannot distinguish [BA, κ, CC, SBA, GM1]
n ∈ {6, 7}: cannot distinguish [CC, SBA, GM1]
n = 8: cannot distinguish [CC, SBA]
n ≥ 9: can distinguish all measures
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To sum up

If distance property is desirable:
Choose CD

Otherwise:
Binary classification ⇒ choose GMr with some r (e.g., CC or SBA)
Multiclass classification ⇒ choose SBA

If averaging is needed:
Choose macro averaging
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