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Active Learning



Realistic Active Learning Scenarios

• Footer information

Class Imbalance in ISIC Dataset for Skin Lesions*

Pedestrian in the dark snapshot from a 
self-driving car**

*Marrakchi et al. MICCAI 2021
**Uber self-driving car crash in Tempe, Arizona. 



Realistic Active Learning Scenarios

*Source: KITTI

Frames samples 
from a footage 
from a self-
driving car*



Realistic Active Learning Scenarios

Favorable 
In-distribution data 
point*

Unfavorable 
Out-of-distribution
data points*

*Cao et al. A Benchmark of Medical 
Out of Distribution Detection



Can a machine learning model be trained using a single 
unified active learning framework that works for a 

broad spectrum of realistic scenarios?
• Footer information

The Question



Submodular Functions

A B
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Information Theoretic Concepts

Entropy: Given a set of random variables 𝑋𝑋1⋯ ,𝑋𝑋𝑛𝑛, the Entropy of a subset of 
random variables: 𝐻𝐻 𝑋𝑋𝐴𝐴 = −∑𝑋𝑋𝐴𝐴 𝑃𝑃 𝑋𝑋𝐴𝐴 log𝑃𝑃 𝑋𝑋𝐴𝐴 . Note that entropy is 
submodular.

• Footer information



Information Theoretic Concepts

Entropy: Given a set of random variables 𝑋𝑋1⋯ ,𝑋𝑋𝑛𝑛, the Entropy of a subset of 
random variables: 𝐻𝐻 𝑋𝑋𝐴𝐴 = −∑𝑋𝑋𝐴𝐴 𝑃𝑃 𝑋𝑋𝐴𝐴 log𝑃𝑃 𝑋𝑋𝐴𝐴 . Note that entropy is 
submodular.

Mutual Information: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and sets 𝐴𝐴,𝐵𝐵 ⊆
𝑉𝑉, the Mutual Information I 𝑋𝑋𝐴𝐴;𝑋𝑋𝐵𝐵 = 𝐻𝐻 𝑋𝑋𝐴𝐴 + 𝐻𝐻 𝑋𝑋𝐵𝐵 − 𝐻𝐻 𝑋𝑋𝐴𝐴∪𝐵𝐵

• Footer information



Information Theoretic Concepts

Entropy: Given a set of random variables 𝑋𝑋1⋯ ,𝑋𝑋𝑛𝑛, the Entropy of a subset of 
random variables: 𝐻𝐻 𝑋𝑋𝐴𝐴 = −∑𝑋𝑋𝐴𝐴 𝑃𝑃 𝑋𝑋𝐴𝐴 log𝑃𝑃 𝑋𝑋𝐴𝐴 . Note that entropy is 
submodular.

Mutual Information: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and sets 𝐴𝐴,𝐵𝐵 ⊆
𝑉𝑉, the Mutual Information I 𝑋𝑋𝐴𝐴;𝑋𝑋𝐵𝐵 = 𝐻𝐻 𝑋𝑋𝐴𝐴 + 𝐻𝐻 𝑋𝑋𝐵𝐵 − 𝐻𝐻 𝑋𝑋𝐴𝐴∪𝐵𝐵

Conditional Entropy: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and sets 𝐴𝐴,𝐵𝐵 ⊆
𝑉𝑉,  the Conditional Entropy 𝐻𝐻 𝑋𝑋𝐴𝐴 𝑋𝑋𝐵𝐵 = 𝐻𝐻 𝑋𝑋𝐴𝐴∪𝐵𝐵 − 𝐻𝐻 𝑋𝑋𝐵𝐵

• Footer information



Information Theoretic Concepts

Entropy: Given a set of random variables 𝑋𝑋1⋯ ,𝑋𝑋𝑛𝑛, the Entropy of a subset of 
random variables: 𝐻𝐻 𝑋𝑋𝐴𝐴 = −∑𝑋𝑋𝐴𝐴 𝑃𝑃 𝑋𝑋𝐴𝐴 log𝑃𝑃 𝑋𝑋𝐴𝐴 . Note that entropy is 
submodular.

Mutual Information: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and sets 𝐴𝐴,𝐵𝐵 ⊆
𝑉𝑉, the Mutual Information I 𝑋𝑋𝐴𝐴;𝑋𝑋𝐵𝐵 = 𝐻𝐻 𝑋𝑋𝐴𝐴 + 𝐻𝐻 𝑋𝑋𝐵𝐵 − 𝐻𝐻 𝑋𝑋𝐴𝐴∪𝐵𝐵

Conditional Entropy: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and sets 𝐴𝐴,𝐵𝐵 ⊆
𝑉𝑉,  the Conditional Entropy 𝐻𝐻 𝑋𝑋𝐴𝐴 𝑋𝑋𝐵𝐵 = 𝐻𝐻 𝑋𝑋𝐴𝐴∪𝐵𝐵 − 𝐻𝐻 𝑋𝑋𝐵𝐵

Conditional Mutual Information: Given a set of random variables, 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 and 
sets 𝐴𝐴,𝐵𝐵,𝐶𝐶 ⊆ 𝑉𝑉, the Conditional Mutual Information I 𝑋𝑋𝐴𝐴;𝑋𝑋𝐵𝐵|𝑋𝑋𝐶𝐶 =
𝐻𝐻 𝑋𝑋𝐴𝐴 𝑋𝑋𝐶𝐶 + 𝐻𝐻 𝑋𝑋𝐵𝐵 𝑋𝑋𝐶𝐶 − 𝐻𝐻(𝑋𝑋𝐴𝐴∪𝐵𝐵|𝑋𝑋𝐶𝐶)

• Footer information



• Footer information

Can we replace 𝐻𝐻 with any submodular function?



• Footer information

Can we replace 𝐻𝐻 with any submodular function?

YES!

This gives us the Submodular Information Measures! 



Submodular Information Measures (SIM)

Given a set of data points 𝑉𝑉 = {1,⋯ ,𝑛𝑛}, and sets 𝐴𝐴,𝑄𝑄 ⊆ 𝑈𝑈, the Submodular 
Mutual Information (SMI) 𝐼𝐼𝐹𝐹 𝐴𝐴;𝑄𝑄 = 𝐹𝐹 𝐴𝐴 + 𝐹𝐹 𝑄𝑄 − 𝐹𝐹(𝐴𝐴 ∪ 𝑄𝑄), where the 
information of a set of points is 𝐹𝐹 𝐴𝐴 and 𝐹𝐹 is a submodular function.

How to select efficient subsets in realistic scenarios?  

• Footer information



Submodular Information Measures (SIM)

Given a set of data points 𝑉𝑉 = {1,⋯ ,𝑛𝑛}, and sets 𝐴𝐴,𝑄𝑄 ⊆ 𝑈𝑈, the Submodular 
Mutual Information (SMI) 𝐼𝐼𝐹𝐹 𝐴𝐴;𝑄𝑄 = 𝐹𝐹 𝐴𝐴 + 𝐹𝐹 𝑄𝑄 − 𝐹𝐹(𝐴𝐴 ∪ 𝑄𝑄), where the 
information of a set of points is 𝐹𝐹 𝐴𝐴 and 𝐹𝐹 is a submodular function.

Given a set of data points 𝑉𝑉 = 1,⋯ ,𝑛𝑛 , and sets 𝐴𝐴,𝑃𝑃 ⊆ 𝑈𝑈, the Submodular 
Conditional Gain (SCG) is F 𝐴𝐴 𝑃𝑃 = 𝐹𝐹 𝐴𝐴 ∪ 𝑃𝑃 − 𝐹𝐹 𝑃𝑃 .

How to select efficient subsets in realistic scenarios?  

• Footer information



Submodular Information Measures (SIM)

Given a set of data points 𝑉𝑉 = {1,⋯ ,𝑛𝑛}, and sets 𝐴𝐴,𝑄𝑄 ⊆ 𝑈𝑈, the Submodular 
Mutual Information (SMI) 𝐼𝐼𝐹𝐹 𝐴𝐴;𝑄𝑄 = 𝐹𝐹 𝐴𝐴 + 𝐹𝐹 𝑄𝑄 − 𝐹𝐹(𝐴𝐴 ∪ 𝑄𝑄), where the 
information of a set of points is 𝐹𝐹 𝐴𝐴 and 𝐹𝐹 is a submodular function.

Given a set of data points 𝑉𝑉 = 1,⋯ ,𝑛𝑛 , and sets 𝐴𝐴,𝑃𝑃 ⊆ 𝑈𝑈, the Submodular 
Conditional Gain (SCG) is F 𝐴𝐴 𝑃𝑃 = 𝐹𝐹 𝐴𝐴 ∪ 𝑃𝑃 − 𝐹𝐹 𝑃𝑃 .

Given a set of data points 𝑉𝑉 = 1,⋯ ,𝑛𝑛 , and sets 𝐴𝐴,𝑄𝑄,𝑃𝑃 ⊆ 𝑈𝑈, the Submodular 
Conditional Mutual Information (SCMI) is 𝐼𝐼𝐹𝐹 𝐴𝐴;𝑄𝑄|𝑃𝑃 = 𝐹𝐹 𝐴𝐴 ∪ 𝑃𝑃 + 𝐹𝐹 𝑄𝑄 ∪ 𝑃𝑃 −
𝐹𝐹 𝐴𝐴 ∪ 𝑄𝑄 ∪ 𝑃𝑃 − 𝐹𝐹(𝑃𝑃).

How to select efficient subsets in realistic scenarios?  

• Footer information



Submodular Information Measures (SIM)
How to select efficient subsets in realistic scenarios?  
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Iyer at al., ALT 2021



Submodular Mutual Information (SMI)
How to select efficient subsets in realistic scenarios?  
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Submodular Conditional Gain (SCG)
How to select efficient subsets in realistic scenarios?  
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Submodular Conditional Mutual Information (SCMI)

How to select efficient subsets in realistic scenarios?  

• Footer information



Relationship between SIM

• Footer information



SIMILAR: Unified AL Framework

• Footer information

Require: Initial labeled set of data points: ℒ, large unlabeled dataset: 𝒰𝒰, loss function ℋ for learning 
model ℳ, batch size: 𝐵𝐵, number of selection rounds: 𝑁𝑁
1. for selection round 𝑖𝑖 = 1 ∶ 𝑁𝑁 do

2. Train model ℳ with loss ℋ on the current labeled set ℒ and obtain parameters 𝜃𝜃𝑖𝑖
3. Using model parameters 𝜃𝜃𝑖𝑖, compute gradients using hypothesized labels 

{∇𝜃𝜃𝑖𝑖ℋ 𝑥𝑥𝑗𝑗 , �𝑦𝑦𝑗𝑗 ,𝜃𝜃𝑖𝑖 ,∀𝑗𝑗 ∈ 𝒰𝒰} and obtain a similarity matrix 𝑋𝑋
4. Instantiate a submodular function 𝑓𝑓 based on 𝑋𝑋
5. 𝒜𝒜𝑖𝑖 ← argmax𝒜𝒜⊆𝒰𝒰, 𝒜𝒜 ≤𝐵𝐵 𝐼𝐼𝑓𝑓(𝒜𝒜;𝒬𝒬|𝒫𝒫) (Optimize SCMI with an appropriate choice of 𝒬𝒬 and 

𝒫𝒫, see Tab. 1)

6. Get labels 𝐿𝐿(𝒜𝒜𝑖𝑖) for batch 𝒜𝒜𝑖𝑖 and ℒ ← ℒ ∪ 𝐿𝐿 𝒜𝒜𝑖𝑖 ,𝒰𝒰 ← 𝒰𝒰 −𝒜𝒜𝑖𝑖

7. end for

8. return trained model ℳ and parameters 𝜃𝜃𝑁𝑁
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Choices of Query and Conditioning Sets for 
Multiple Co-occurring Realistic Scenarios

• For Rare classes + Redundancy: �𝑅𝑅 is the subset of data points from the labeled set 𝐿𝐿 that belong to the rare classes.
• For Redundancy + OOD: Kernel for 𝐼𝐼∗ is computed using an exponential kernel to penalize similar samples in 𝐼𝐼.



Results: AL with Rare Classes

• SMI based functions not only consistently outperforms all baselines 
by ~ 10 − 18% in terms of average accuracy on rare classes.

• FLQMI and LOGDETMI which balance between diversity and 
relevance perform better than GCMI which only models relevance.



Results: AL with Rare Classes

SMI based functions not only consistently outperforms all baselines by 
by ~ 5 − 10% in terms of overall accuracy.



Results: AL with Rare Classes

The gain in performance is because SMI functions pick the greatest
number of diverse datapoints from the rare classes. 



Results: AL with OOD Data

• SCMI based acquisition functions significantly outperform existing AL approaches 
by ~ 5 − 10%

• Existing acquisition functions have a high variance which is undesirable in real-
world deployment scenarios. Our SCMI based acquisition functions show the 
lowest variance in training. 



Results: AL with OOD Data

SCMI functions show ~2 − 3% improvement over SMI as the conditioning becomes 
stronger. This is because SCMI tend to select more in-distribution points compared 
to SMI.



Results: AL with OOD Data

SMI and SCMI tend to select more in-distribution points compared to baselines.



Results: AL with Redundancy

• As expected, the diversity and uncertainty based methods outperform random.
• We observe that the SCG functions significantly outperform all baselines by ~ 3 − 5% in the later 

active learning rounds as the conditioning gets stronger.
• We observe this gain because SCG based acquisition functions select significantly more unique 

points than other methods.



Conclusion

• We proposed a unified active learning framework SIMILAR using the 
submodular information functions.

• We showed the applicability of the framework in three realistic scenarios for 
active learning, namely rare classes, redundancy, and out of distribution data.

• In each case, we observed that the functions in SIMILAR significantly 
outperform existing baselines in each of these tasks. 

• Our real-world experiments on MNIST, CIFAR-10, and ImageNet show that 
many of the SIM functions (specifically the LOGDET and FL variants) yield ~ 
5% − 18% gain compared to existing baselines particularly in the rare class 
scenario and ~ 5% − 10% OOD scenarios.



Thank You

Fo r m o re  d e t a ils , d o  vis it  o u r p o st e r.
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