Temporally Abstract Partial Models

Zafarali Ahmed

Gheorghe Comanici

Doina Precup

66 **Theories of embodied** cognition and perception suggest that humans are able to represent the world knowledge in the form of internal models across different time scales.

Pezzulo & Cisek, 2016

Motivation

Building internal models across different time scales would allow

- **Faster Learning**
- Efficient Planning
- Ability to make predictions across different scales

Existing literature considers

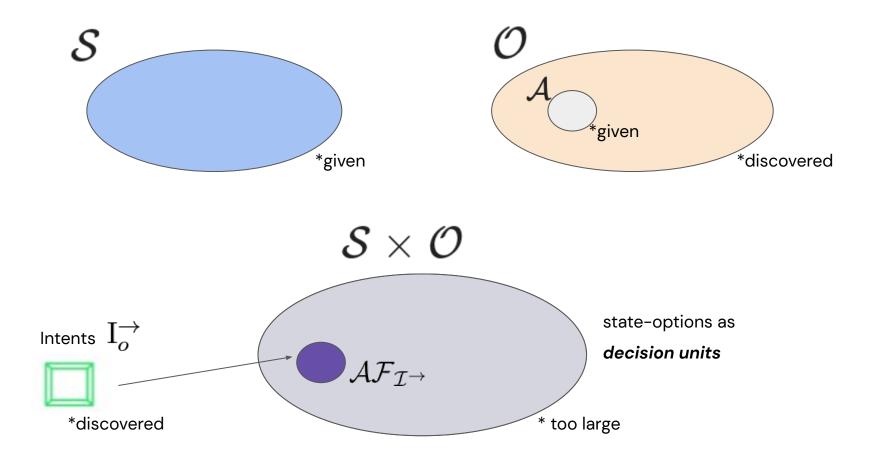
- Single-step model learning which is challenging accumulates error!
- Model based RL where models are built over entire state-action space intractable!
- Learning & planning with options that apply everywhere no spatial specialization!

Key Contributions

We extend option models to account for *affordances*.

We establish *a theoretical understanding* of the trade-offs associated with using options vs. actions jointly with affordances.

Empirically demonstrate end-to-end learning of affordances and partial option models in a function approximation setting.



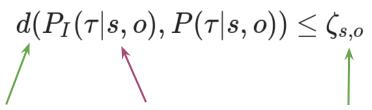
Temporally Extended Intent I_o^{\rightarrow}

Describes the intended result of executing option o in state s

The associated intent model is denoted by

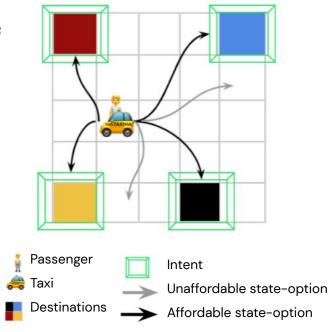
$$I_o^
ightarrow(s, au)=P_I(au|s,o)$$

Intent is satisfied to a degree $\zeta_{s,o}$ if and only if:



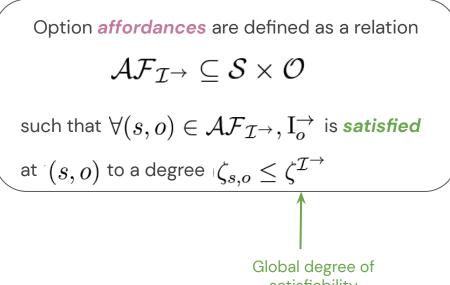
Metric between probability distributions

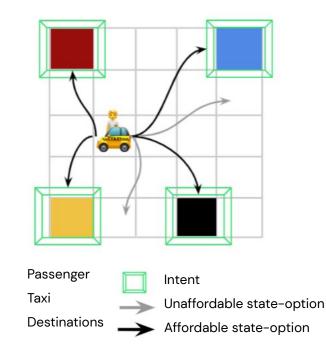
Trajectory starting in s and following option o



Affordances for Temporal Abstractions

Consider a set of intents $\mathcal{I}^{\rightarrow} = \bigcup_{o \in \mathcal{O}} \mathbf{I}_{o}^{\rightarrow}$

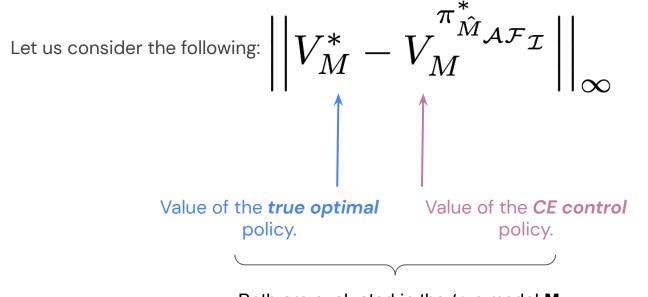




Theoretical Analysis

Planning Loss

Certainty-equivalence (CE) planning loss: act according to the policy that is optimal with respect to the *estimated* model.



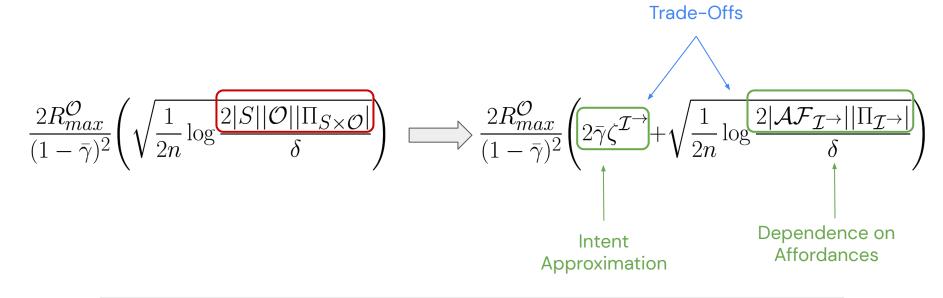
Both are evaluated in the *true* model **M**.

Planning Loss Bound: temporal abstraction

$$\frac{2R_{max}}{(1-\gamma)^2} \times \left(\sqrt{\frac{1}{2n}\log\frac{2|S||A||\Pi_{S\times A}|}{\delta}}\right) \longrightarrow \frac{2R_{max}^{\mathcal{O}}}{(1-\bar{\gamma})^2} \left(\sqrt{\frac{1}{2n}\log\frac{2|S||\mathcal{O}||\Pi_{S\times \mathcal{O}}|}{\delta}}\right)$$

$$Jiang et al. 2015 Too big!$$

Planning Loss Bound: temporal abstraction + affordances

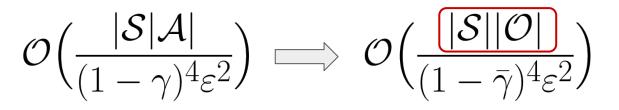


Faster planning across different timescales, though at the cost of potential approximation bias.

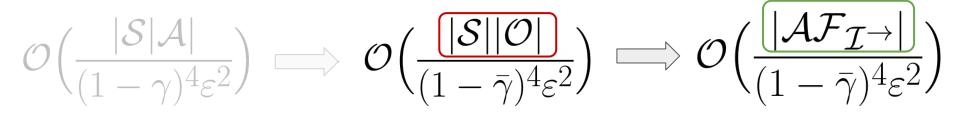
Sample Complexity

- To build the transition model, transitions are estimated by sampling the simulator, with the number of calls to this simulator referred to as the *sample complexity*.
- Modelling one-time step dynamics would require samples in the order of magnitude of the size of the state-action space!
- **Solution**: construct temporally abstract partial models
- Sample complexity of obtaining an \mathcal{E} estimation of the optimal action-value function given only access to a generative model.

Sample Complexity: temporal abstraction



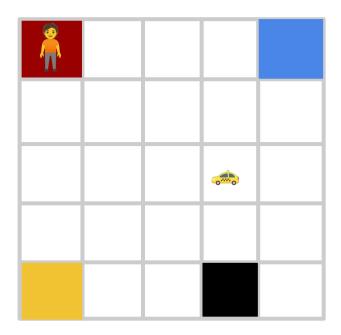
Sample Complexity: *temporal abstraction* + *affordances*



The ability to understand abstract action opportunities resulting in improved sampled efficiency.

Empirical Analysis

The Taxi Domain

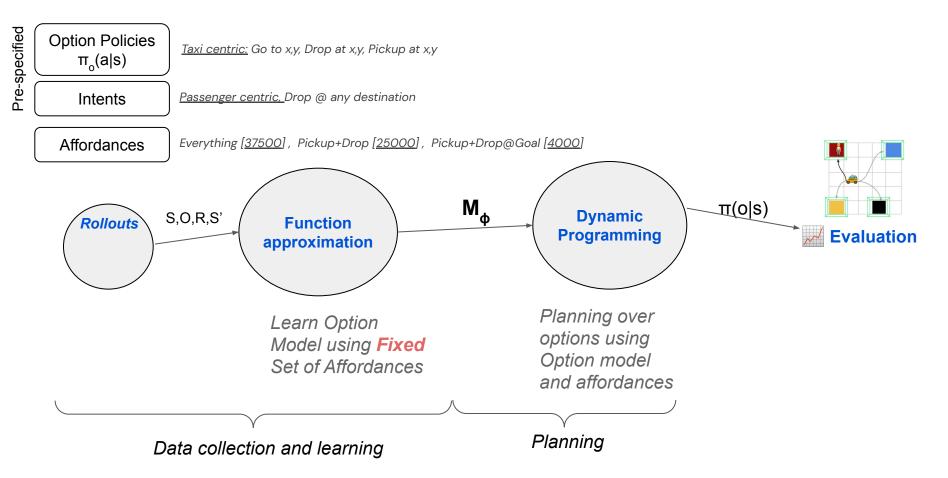


Task

Rewards

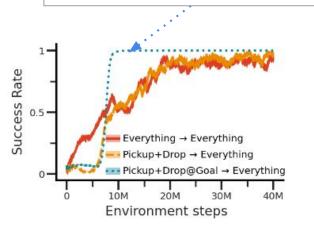
- □ Correct drop off **+20 reward**.
- □ Wrong drop off **-10 reward**.
- □ -1 *reward* per step.

Experimental Setup



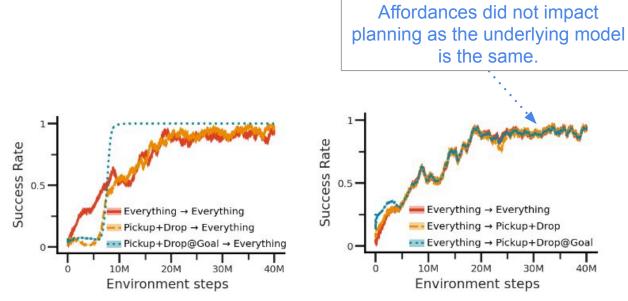
When are intents & affordances are most useful?

Affordances improve model learning even in the absence of them during planning => useful partial option model



(a) Data collection and model learning with affordances.

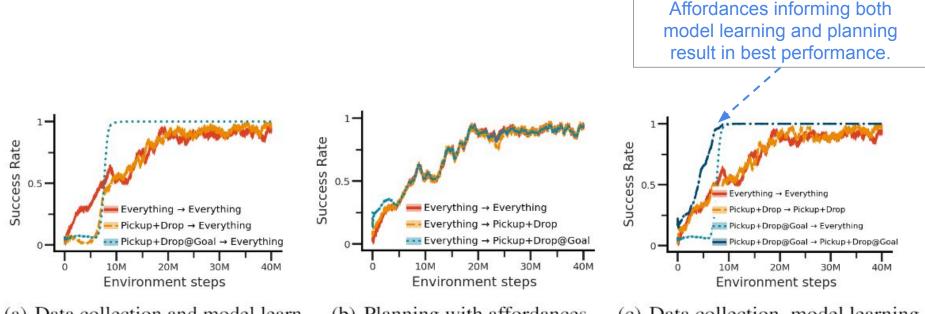
When are intents & affordances are most useful?



(a) Data collection and model learn- (b) ing with affordances.

(b) Planning with affordances.

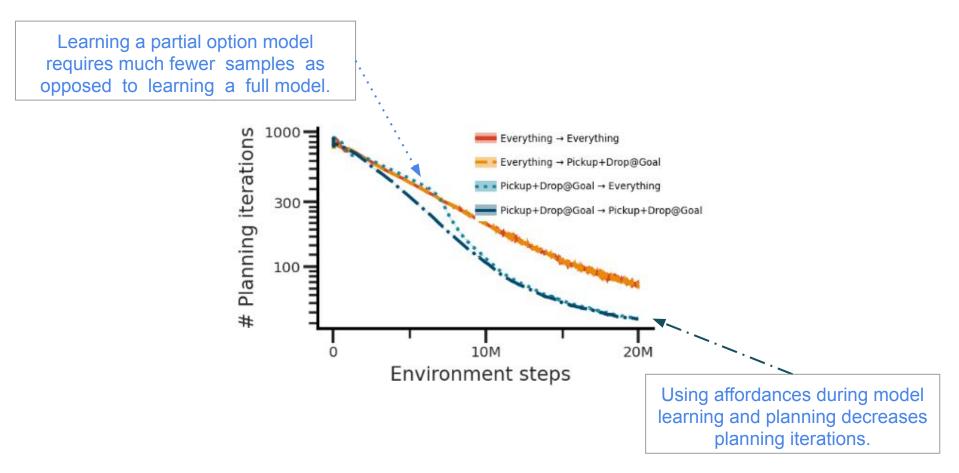
When are intents & affordances are most useful?



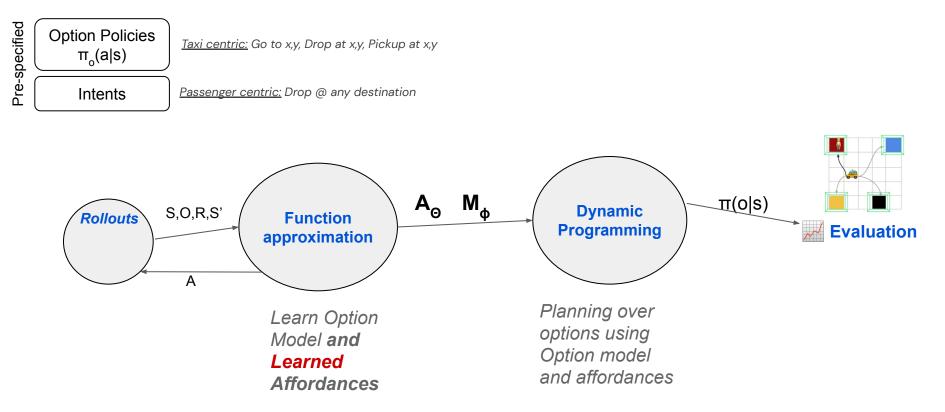
(a) Data collection and model learning with affordances. (b) Planning with affordances.

(c) Data collection, model learning and planning with affordances.

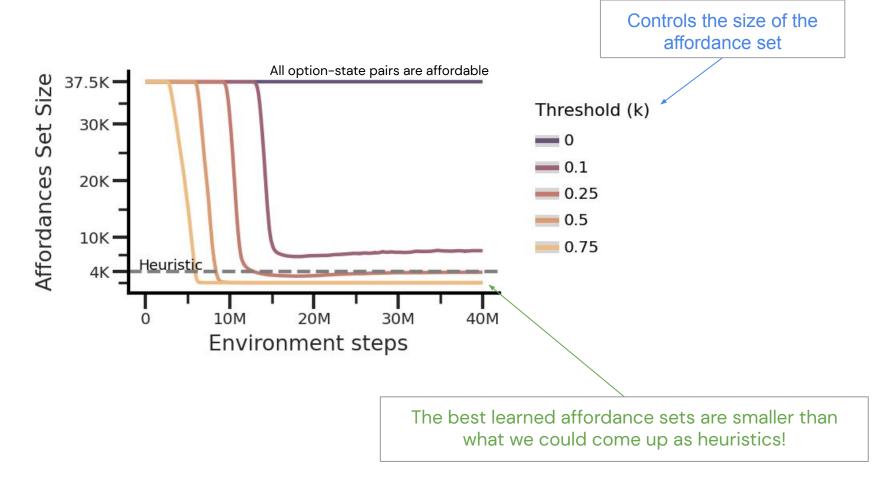
Impact on sample efficiency



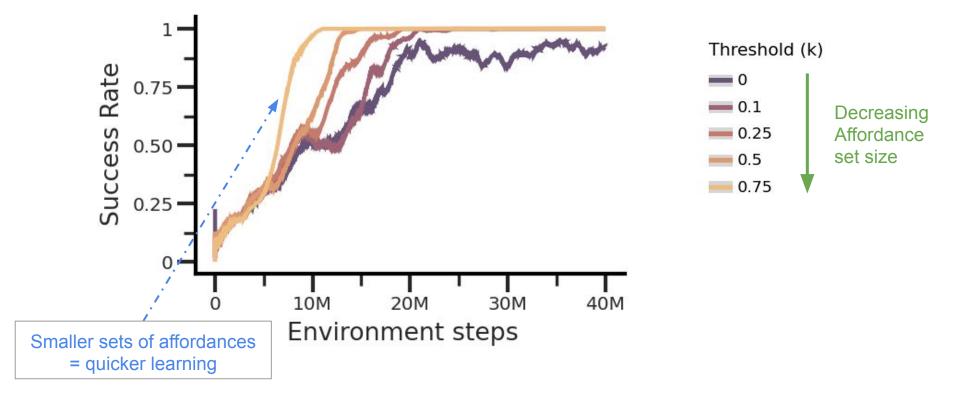
Experimental Setup - Learned affordances



We can learn affordance sets online!



The impact of the affordance set size on performance



Conclusion

We presented notions of intents and affordances that can be used together with options.

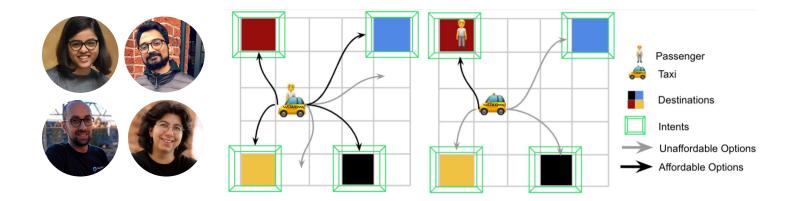
- **Theoretically** Modelling temporally extended dynamics for only relevant parts leads to
 - **Faster planning across different timescales**
 - Improved sampled complexity in learning such models
- **[Empirically]** Learning affordances online for model learning and planning results in
 - Improvements in performance in downstream task
 - Drastically reduced state-option space

Future Work

- **Discovery** of options as well as intents
- Study the emergence of *new* affordances at the boundary of the agent–environment interaction in the presence of non–stationarity.
- **Relate our work to cognitive science models of** *intentional* options

tl;dr Temporally Abstract Partial Models

Proposed temporally abstract <u>partial options models</u> via the notion of <u>affordances</u>, with <u>theoretical guarantees</u> and <u>empirical analysis</u> demonstrating improvement in *final performance* and *sample efficiency*.



To appear @NeurIPS 2021 Contact: khimya.khetarpal@mail.mcgill.ca