Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning (With Outliers) Problems

Zixiu Wang¹ Y

¹University of Science and Technology of China ²ByteDance AI Lab

Yiwen Guo² Hu Ding¹

Motivation

Some Facts

- It is hard to store and process data in this big data era.

Question

Can we reduce the data size by representing the big dataset with a much smaller data summary, by compromising on the approximation of objective function?

• The training of most machine learning tasks is to minimize an objective function.

Coreset is designed with the trade-off between size and accuracy

 h_C : the solution obtained on C h_X : the solution obtained on X

We hope that $Loss(h_C; X) \approx Loss(h_X; X)$

Definition (Strong Coreset)

For any *h* on the plane, we have that $Loss(h; X) \approx Loss(h; C)$

Definition & Illustration

Why Coreset?

The coreset has several advantages:

- Has small size thus it can be processed efficiently
- The approximation is guaranteed by the careful construction
- Supports distributed computing naturally
- Can be used to design streaming algorithms
- Can be used to design dynamic algorithms

Problems

- 1. Most existing works concentrate on clustering-style problems.
- 2. There are some negative results of the existence of small strong Coreset. [Munteanu et al, NeurIPS 2019]
- 3. Current coreset methods are not robust for handling outliers.

Based on Merge-and-Reduce

Merge-and-Reduce

Handling outliers

- The number of outliers is given as z.
- lacksquare
- The reduce process would accumulate the error on z.

- Streaming algorithms from Merge-and-Reduce [Har-Peled and Mazumdar, STOC] 2004]
- Fully-dynamic algorithms from Mergeand-Reduce [Henzinger and Kale, ESA] 2020]

There are robust Coreset constructions that need to know z. [Jiecao Chen et al, NeurIPS 2018]

Continuous-and-Bounded Learning Problems

- We consider the learning problems that have smooth objective functions
- To capture the smoothness, we use the notations of *L*-Lipschitz, *L*-smooth, etc.

Examples

- Logistic Regression: D-Lipschitz where D is the diameter of the dataset
- Bregman Divergence: 2L-Lipschitz if ϕ is L-smooth
- Truth Discovery [Shi Li et al, Algorithmica]: 2-Lipschitz

		ŀ
	6	
	2	
	2	
	2	
	2	
	2	
	2	
	2	

Continuous-and-Bounded Learning Problems

In practice, it is reasonable to consider a bounded region of the solution, rather than the total space

Bounded Region

A ball of radius ℓ centered at $\tilde{\theta}$ in the solution space

Data insert/delete/update

- We assume that the number of outliers z is given.
- As for CnB learning problems with outliers, we can construct robust coreset based on the existing coreset method
- The dataset is partitioned in line with the loss value $f(\tilde{\theta}, x)$ of each data point x

Merge-and-Reduce

• We cannot use the merge-andreduce method directly in the presence of outliers

 Our robust coreset can induce robust algorithms in the distributed setting and the dynamic data streams

Coreset Method for CnB learning Problems

Importance Sampling based method

- In the importance sampling method, we need to compute an upper bound of the sensitivity
- As for CnB learning problems, we can bound the sensitivity via a quadratic fractional programming

Spatial Partition based method

- Partition dataset *X* into several parts due to the value of $f(\tilde{\theta}, x)$
- Sample from each part uniformly and take the union
- The size of this coreset depends on the doubling dimension of the solution space

