
EvoGrad:
Efficient Gradient-Based Meta-Learning and

Hyperparameter Optimization

Ondrej Bohdal, Yongxin Yang, Timothy Hospedales
{ondrej.bohdal, yongxin.yang, t.hospedales}@ed.ac.uk

● Efficient approach for gradient-based meta-learning
○ Existing approaches: expensive second-order derivatives and a longer computational graph

○ EvoGrad: first-order derivatives only

● Inspired by evolutionary techniques to efficiently compute hypergradients

● Significantly lower runtime and memory usage, with similar performance as

existing methods
○ Can scale meta-learning to larger network architectures

● Evaluated on several recent meta-learning applications
○ Cross-domain few-shot learning with feature-wise transformations

○ Noisy label learning with MetaWeightNet

○ Low-resource cross-lingual learning with MetaXL

EvoGrad overview

Background

● Goal: estimate hyperparameters 𝛌 that minimize the validation loss of the
model parameterized by 𝜽 and trained with loss and 𝛌

● Necessary to calculate hypergradient

● Direct term is typically zero, so simple first-order approximation is
not available

EvoGrad update

● Evolutionary inner step
○ Sample K random perturbations 𝛜 and apply them to model parameters 𝜽 as

○ Compute training losses for K models on the current minibatch
○ Calculate weights for each model as

○ Update model parameters via the affine combination

● Compute hypergradient using validation data
○ Inner loop does not use gradients, so overall the method is first-order

● Do standard update of the base model afterwards

Illustration

Comparison to existing methods

Experiments

● Simple problems
○ 1-dimensional problem where we try to find the minimum of a function

○ Meta-learning rotation transformation

● Recent meta-learning applications
○ Cross-domain few-shot learning with feature-wise transformations

○ Noisy label learning with MetaWeightNet

○ Low-resource cross-lingual learning with MetaXL

Illustration using a 1-dimensional problem

● Minimize where parameter 𝑥 is optimized using SGD

with that includes a meta-parameter λ
● Closed-form solution for the hypergradient is

Illustration using a 1-dimensional problem

Rotation transformation

● Goal: train a model that correctly classifies rotated images
○ Training data is originally unrotated

● How: meta-learn rotation angle

● Approach from Tseng et al., ICLR’20

● Goal: improve few-shot learning generalisation in cross-domain conditions

● How: meta-learn stochastic feature-wise transformation layers that regularize

metric-based few-shot learners

● Key steps:
○ 1) Update the model with the meta-parameters on a pseudo-seen domain

○ 2) Update the meta-parameters by evaluating the model on a pseudo-unseen domain by

backpropagating through the first step

● EvoGrad efficiency improvements allow scaling from ResNet10 to ResNet34

within standard 12GB GPU!

Cross-domain few-shot classification via learned
feature-wise transformation

Cross-domain few-shot classification via learned
feature-wise transformation

Cross-domain few-shot classification via learned
feature-wise transformation

Noisy label learning with MetaWeightNet

● Approach from Shu et al., NeurIPS’19

● Goal: improve robustness to training with noisy labels

● How: train an auxiliary neural network that performs instance-wise loss

re-weighting on the training set

Noisy label learning with MetaWeightNet

Noisy label learning with MetaWeightNet

Scalability analysis

● Modify the number of filters in the base model (MetaWeightNet application)

Low-resource cross-lingual learning with MetaXL

● Approach from Xia et al., NAACL’21

● Goal: more efficient transfer from source language to low-resource target

language

● How: meta-learn how to transform representations using a representation

transformation network

● Selected task: named entity recognition (NER) with English source language

MetaXL performance

MetaXL Efficiency

Summary

● Efficient first-order method for gradient-based meta-learning and

hyperparameter optimization

● Significant improvements in runtime and memory, while achieving similar

performance as existing methods

● Practical impact shown on recent meta-learning applications from both

computer vision and natural language processing

Thanks!

Code: https://github.com/ondrejbohdal/evograd

