# Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

### Jinwoo Kim, Saeyoon Oh, Seunghoon Hong

School of Computing, KAIST

{jinwoo-kim, saeyoon17, seunghoon.hong}@kaist.ac.kr

## We present a generalization of Transformers to sets, graphs, and hypergraphs, and reduce its computational cost to linear to input size.

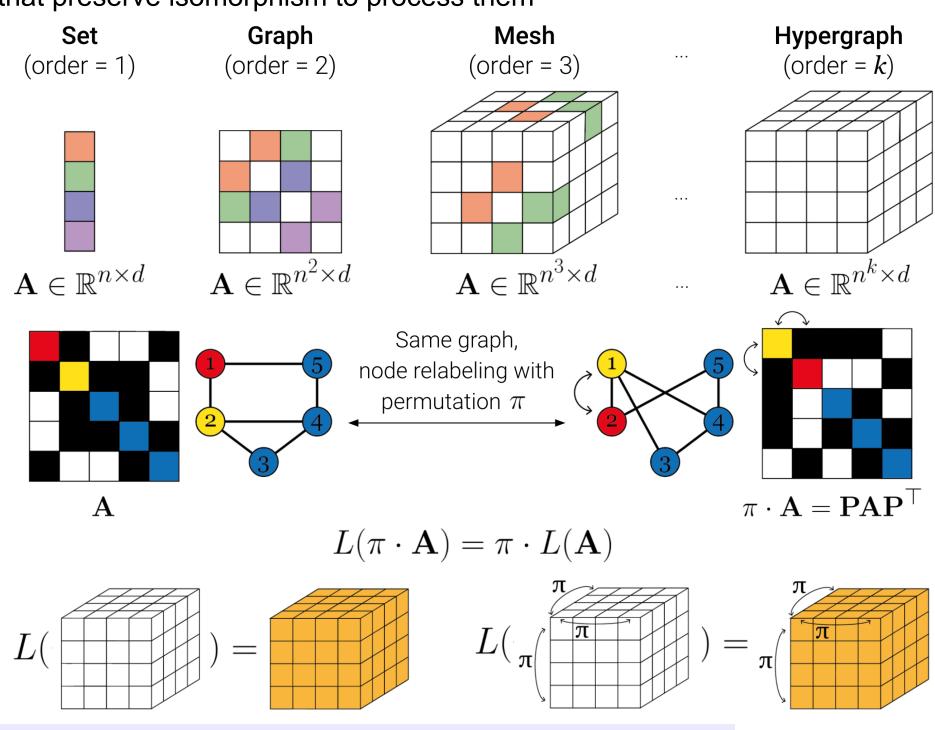
- Current graph neural nets are local message-passing (MPNNs), and do not scale well
- Equivariant MLPs are theoretically powerful and flexible, but less practical

#### Higher-Order Transformers offer a working solution

- Equivariance theory + self-attention  $\rightarrow$  Transformers for any-order graphs
- Powerful operations, involving both local and global dependency over input elements
- Flexible translation between different-order graphs (e.g., set-to-(hyper)graph)
- Theoretically and empirically stronger than MPNNs, even with same linear complexity

#### Background: Permutation Equivariant Graph Learning

• View sets, graphs, and hypergraphs as permutable tensors; use equivariant layers that preserve isomorphism to process them



**Background: Equivariant Linear Layers**  $Lk \rightarrow l: \mathbb{R}^{n^k \times d} \rightarrow \mathbb{R}^{n^l \times d'}$ 

• Theoretically maximally expressive [1], involving various local and global interactions

$$L_{k \to l}(\mathbf{A})_{\mathbf{j}} = \sum_{\mu} \sum_{\mathbf{i}} \mathbf{B}_{\mathbf{i},\mathbf{j}}^{\mu} \mathbf{A}_{\mathbf{i}} w_{\mu} + \sum_{\lambda} \mathbf{C}_{\mathbf{j}}^{\lambda} b_{\lambda}$$
Outer sum over Masked inner sum with equivalence classes  $\mu$  binary basis tensor  $\mathbf{B}^{\mu}$   $\mathbf{B}_{\mathbf{i},\mathbf{j}}^{\mu} = \begin{cases} 1 & (\mathbf{i},\mathbf{j}) \in \mu \\ 0 & \text{otherwise} \end{cases}$ 
• Example: First-order equivariant layer  $L_{1 \to 1}$  (DeepSet)
$$L_{1 \to 1}(\mathbf{A})_{j} = \sum_{i} (I_{n})_{ij} \mathbf{A}_{i} w_{1} + \sum_{i} (1_{n} 1_{n}^{\top})_{ij} \mathbf{A}_{i} w_{2} + (1_{n})_{j} b_{1}$$
Output set  $\mathbf{O} \mathbf{A}_{j} w_{1}$   $\mathbf{O} \sum_{i} \mathbf{A}_{i} w_{2}$ 

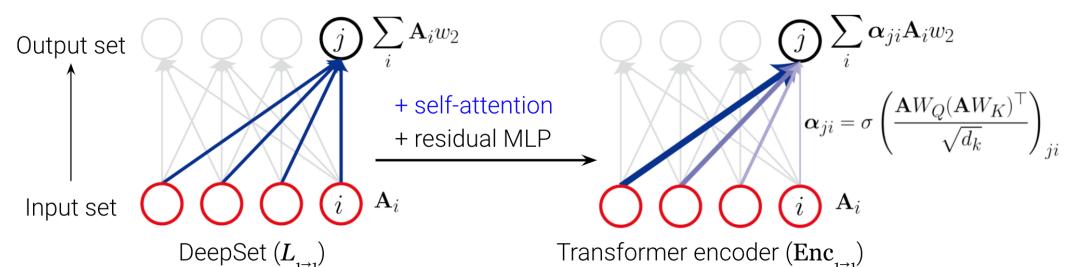
Input set  $\mathbf{O} = \mathbf{O} \mathbf{A}_j$ 

 $\mu_1$ : feedforward

 $\mu_{_2}$ : sum-pool

#### Transformers ( $Enc_{1\rightarrow 1}$ ) Generalize DeepSets ( $L_{1\rightarrow 1}$ )

- DeepSet, or first-order linear layer ( $L_{1\rightarrow 1}$ ), is feedforward ( $\mu_1$ ) + static sum-pool ( $\mu_2$ )
- To model *adaptive* interactions of set elements, we use self-attention mechanism
- This procedurally improves a DeepSet layer into a Transformer encoder layer (Enc $_{1\rightarrow 1}$ )



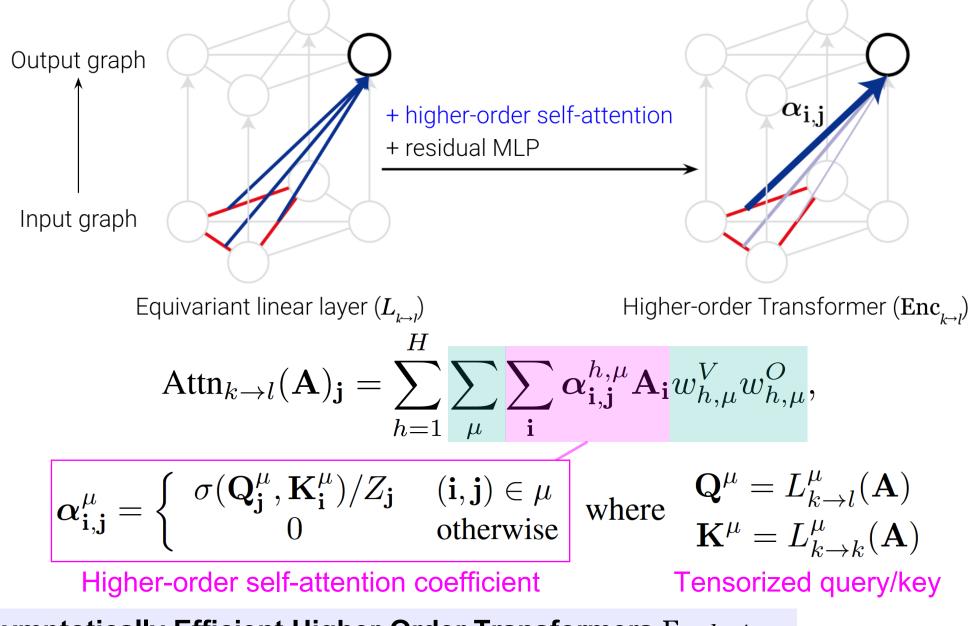
#### **Higher-Order Transformers** $Enck \rightarrow l$

- Extend the first-order case (set) to higher orders (graphs and hypergraphs)
- Combine higher-order self-attention  $Attn_{k \rightarrow l}$  and residual equivariant  $MLP_{l \rightarrow l}$

$$\operatorname{Enc}_{k \to l}(\mathbf{A}) = \operatorname{Attn}_{k \to l}(\mathbf{A}) + \operatorname{MLP}_{l \to l}(\operatorname{Attn}_{k \to l}(\mathbf{A}))$$
$$\operatorname{MLP}_{l \to l}(\cdot) = L^2_{l \to l}(\operatorname{ReLU}(L^1_{l \to l}(\cdot)))$$

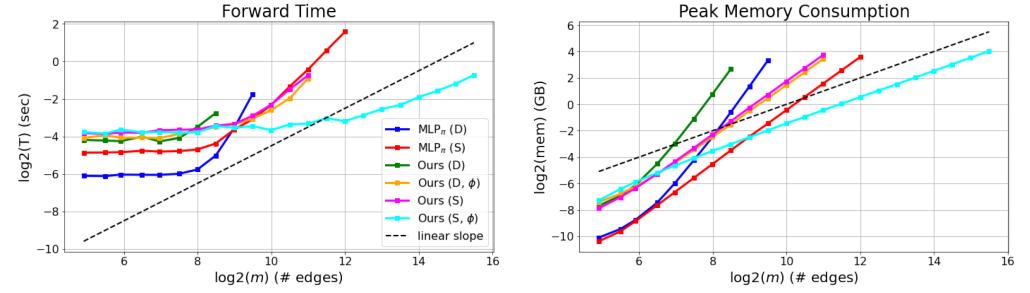
#### Higher-Order Self-Attention Attnk→/

• Generalize each basis tensor in  $L_{k\rightarrow l}$  with higher-order attention coefficient tensor



#### Asymptotically Efficient Higher-Order Transformers $Enck \rightarrow l, \varphi$

- Reduce asymptotic complexity of  $Enck \rightarrow l$
- + Lightweight sublayers
- + Sparse input and output hypergraphs
- + Kernelized attention
- Resulting architecture has linear complexity O(m) to number of input hyperedges m, same to all message-passing GNNs; but still theoretically more expressive



#### Large-Scale Graph Regression ( $2\rightarrow 2$ , $2\rightarrow 0$ ): PCQM4M-LSC

- Higher-order Transformer outperforms all baselines by a large margin, demonstrating benefits in large-scale settings
- Higher-order attention is potentially better in handling long-range interactions than the current practice of augmenting MPNNs with a virtual node
- Heuristic graph embeddings (e.g., Laplacian) are insufficient to utilize features from edges, while second-order Transformers can use all edge information

| Model                                 | Validate MAE |
|---------------------------------------|--------------|
| MLP-FINGERPRINT ([17])                | 0.2044       |
| GCN ([17])                            | 0.1684       |
| GIN ([17])                            | 0.1536       |
| GCN-VN ([17])                         | 0.1510       |
| GIN-VN ([17])                         | 0.1396       |
| Transformer + Laplacian PE*           | 0.2162       |
| $MLP_{\pi}$ (S)*                      | 0.1464       |
| Ours (S, $\phi$ ) <sub>-SMALL</sub> * | 0.1376       |
| Ours $(\mathbf{S}, \phi)^*$           | 0.1294       |
| Ours (S, $\phi$ )                     | 0.1263       |

#### Set-to-Graph Prediction (1 $\rightarrow$ 2): Delaunay, Jets

- Mixed-order Transformers, both softmax and kernel, outperform all baselines; kernelized attention is often competitive or sometimes better than softmax
- Compared to equivariant MLP, the results indicate that attention mechanism is helpful in modeling graphs with varying numbers of nodes

|             | Method            | F1    | RI    | ARI   |                                           | Method            | Acc   | Prec  | Rec   | F1    |  |
|-------------|-------------------|-------|-------|-------|-------------------------------------------|-------------------|-------|-------|-------|-------|--|
| Jets<br>(B) | AVR               | 0.565 | 0.612 | 0.318 | Delaunay<br>(50)                          | SIAM              | 0.939 | 0.766 | 0.653 | 0.704 |  |
|             | MLP               | 0.533 | 0.643 | 0.315 |                                           | SIAM-3            | 0.911 | 0.608 | 0.538 | 0.570 |  |
|             | SIAM              | 0.606 | 0.675 | 0.411 |                                           | GNN0              | 0.826 | 0.384 | 0.966 | 0.549 |  |
|             | SIAM-3            | 0.597 | 0.673 | 0.396 |                                           | GNN5              | 0.809 | 0.363 | 0.985 | 0.530 |  |
|             | GNN               | 0.586 | 0.661 | 0.381 |                                           | GNN10             | 0.759 | 0.311 | 0.978 | 0.471 |  |
|             | S2G               | 0.646 | 0.736 | 0.491 |                                           | S2G               | 0.984 | 0.927 | 0.926 | 0.926 |  |
|             | S2G+              | 0.655 | 0.747 | 0.508 |                                           | S2G+              | 0.983 | 0.927 | 0.925 | 0.926 |  |
|             | Ours (D)          | 0.667 | 0.746 | 0.520 |                                           | Ours (D)          | 0.994 | 0.981 | 0.967 | 0.974 |  |
|             | Ours (D, $\phi$ ) | 0.670 | 0.751 | 0.526 |                                           | Ours (D, $\phi$ ) | 0.991 | 0.967 | 0.952 | 0.959 |  |
| Jets<br>(C) | AVR               | 0.695 | 0.650 | 0.326 | Delaunay<br>(20-80)                       | SIAM              | 0.919 | 0.667 | 0.764 | 0.687 |  |
|             | MLP               | 0.686 | 0.658 | 0.319 |                                           | SIAM-3            | 0.895 | 0.578 | 0.622 | 0.587 |  |
|             | SIAM              | 0.729 | 0.695 | 0.406 |                                           | GNN0              | 0.810 | 0.387 | 0.946 | 0.536 |  |
|             | SIAM-3            | 0.719 | 0.710 | 0.421 |                                           | GNN5              | 0.777 | 0.352 | 0.975 | 0.506 |  |
|             | GNN               | 0.720 | 0.689 | 0.390 |                                           | GNN10             | 0.746 | 0.322 | 0.970 | 0.474 |  |
|             | S2G               | 0.747 | 0.727 | 0.457 |                                           | S2G               | 0.947 | 0.736 | 0.934 | 0.799 |  |
|             | S2G+              | 0.751 | 0.733 | 0.467 |                                           | S2G+              | 0.947 | 0.735 | 0.934 | 0.798 |  |
|             | Ours (D)          | 0.755 | 0.732 | 0.469 |                                           | Ours (D)          | 0.993 | 0.982 | 0.960 | 0.971 |  |
|             | Ours (D, $\phi$ ) | 0.757 | 0.735 | 0.473 |                                           | Ours (D, $\phi$ ) | 0.989 | 0.948 | 0.956 | 0.952 |  |
|             | AVR               | 0.970 | 0.965 | 0.922 |                                           |                   |       |       |       |       |  |
|             | MLP               | 0.960 | 0.957 | 0.894 |                                           |                   |       |       |       |       |  |
|             | SIAM              | 0.973 | 0.970 | 0.925 |                                           |                   |       |       |       |       |  |
| Jets        | SIAM-3            | 0.895 | 0.876 | 0.729 |                                           |                   |       |       |       |       |  |
| (L)         | GNN               | 0.972 | 0.970 | 0.929 |                                           |                   |       |       |       |       |  |
|             | S2G               | 0.972 | 0.970 | 0.931 |                                           |                   |       |       |       |       |  |
|             | S2G+              | 0.971 | 0.969 | 0.929 |                                           |                   |       |       |       |       |  |
|             | Ours (D)          | 0.974 | 0.972 | 0.935 | Ground Truth Ours $(D, \varphi)$ S2G - FN |                   |       |       |       |       |  |
|             | Ours (D, $\phi$ ) | 0.974 | 0.972 | 0.935 |                                           |                   |       |       |       |       |  |

#### *k*-Uniform Hyperedge Prediction (1 $\rightarrow$ *k*): GPS, MovieLens, Drug

- Higher-order Transformer generally shows high performance, even without introducing task-specific inductive biases as in some baselines
- Higher-order self-attention is effective in learning higher-order representations

|                      | G     | PS    | MovieLens |       | Drug  |       |
|----------------------|-------|-------|-----------|-------|-------|-------|
|                      | AUC   | AUPR  | AUC       | AUPR  | AUC   | AUPR  |
| node2vec-mean ([36]) | 0.563 | 0.191 | 0.562     | 0.197 | 0.670 | 0.246 |
| node2vec-min ([36])  | 0.570 | 0.185 | 0.539     | 0.186 | 0.684 | 0.258 |
| DHNE ([36])          | 0.910 | 0.668 | 0.877     | 0.668 | 0.925 | 0.859 |
| Hyper-SAGNN-E        | 0.947 | 0.788 | 0.922     | 0.792 | 0.963 | 0.897 |
| Hyper-SAGNN-W        | 0.907 | 0.632 | 0.909     | 0.683 | 0.956 | 0.890 |
| S2G+(S)              | 0.943 | 0.726 | 0.918     | 0.737 | 0.963 | 0.898 |
| Ours (S, $\phi$ )    | 0.952 | 0.804 | 0.923     | 0.771 | 0.964 | 0.901 |

1. Maron et al., Invariant and Equivariant Graph Networks, 2019.





