

Revisit Multimodal Meta-Learning through the Lens of Multi-Task Learning

Milad Abdollahzadeh, Touba Malekzadeh, Ngai-Man Cheung Singapore University of Technology and Design

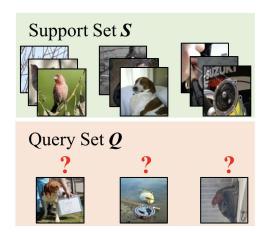
NeurIPS 2021

Meta-Learning

Meta-learning aims to improve the learning algorithm

Providing an opportunity to tackle many challenges of deep learning: data-efficient AI

Meta-Learning as a solution for few-shot learning



Meta-Learning

Episodic Learning

Match the condition in which the model is trained (meta-train) and tested (meta-test)

Given 1 example of 5 classes:

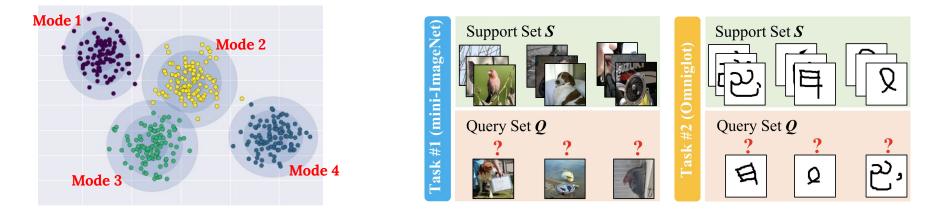
Classify new examples

5-way, 1-shot image classification problem

Multimodal Meta-Learning

Generalizing the conventional setup for more diverse task distributions [1]

Multimodality in task distribution



More challenging to current meta-learners

[1] Vuorio, Risto, et al. "Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation." Advances in Neural Information Processing Systems 32 (2019): 1-12.

Research Gap

Main Claim of previous work:

Improving generalization by transferring knowledge between different modes of task distributions

However, there are two main questions that need to be addressed:

I) Not clear how task from one mode impacts the learning of task from another mode

II) Can we make a better use of knowledge transfer and have a better generalization?

Our Contributions

To **address** the discussed research gaps:

- 1) We extend the **transference idea** [1] from multi-task learning to episodic learning scenario of meta-learning to analyse information transfer between few-shot tasks
- 2) Propose **a new multimodal meta-learning** called **K**ernel **M**odu**L**ation (**KML**) which significantly advances state-of-the-art

Episodic learning from the lens of Multi-Task learning



Information Transfer (Transference): the effect of gradients update from one episode to the network parameters on the generalization performance on other episodes

Measure transference from source (meta-train) task *i* to target (meta-test) task *j* Calculate the loss on target task before and after updating parameters wrt source task

The ratio between the loss of task j after and before parameter update w.r.t task i

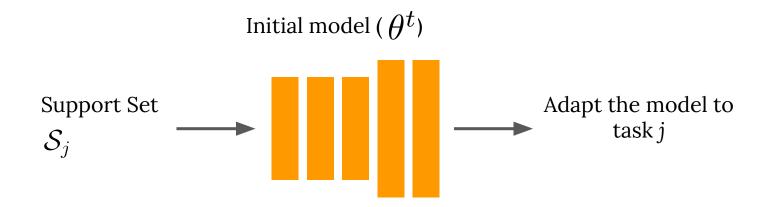
$$LR_{i \to j} = \frac{\mathcal{L}_{\mathcal{T}_j}(\mathcal{Q}_j; \theta_i^{t+1}, \mathcal{S}_j)}{\mathcal{L}_{\mathcal{T}_j}(\mathcal{Q}_j; \theta^t, \mathcal{S}_j)}$$

LR<1 : **Positive knowledge transfer** from source task *i* to target task *j*

LR>1 : Negative knowledge transfer from source task *i* to target task *j*

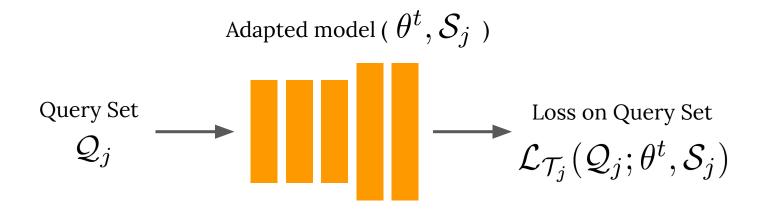
Transference from source (meta-train) task i to target (meta-test) task j

#1. Calculate the loss of task j with initial model parametersa) adapt model using the support set of target task j



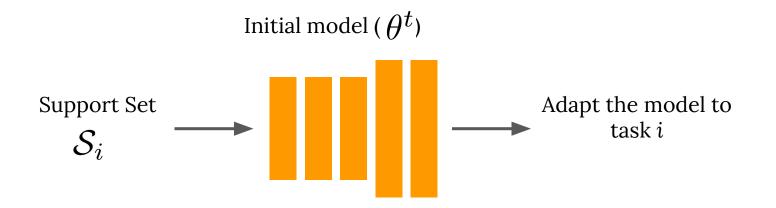
Transference from source (meta-train) task i to target (meta-test) task j

#1. Calculate the loss of task j with initial model parametersb) calculate the loss of adapted model using query set of target task j



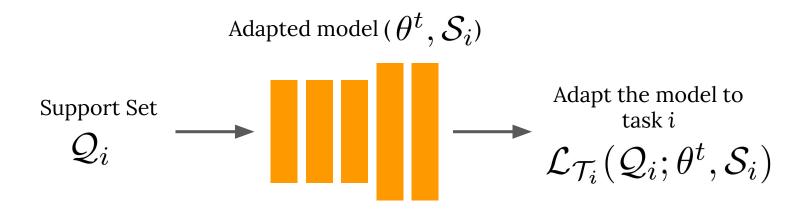
Transference from source (meta-train) task i to target (meta-test) task j

#2. Update the initial model with respect to task *i*a) adapt the model using support set of source task *i*



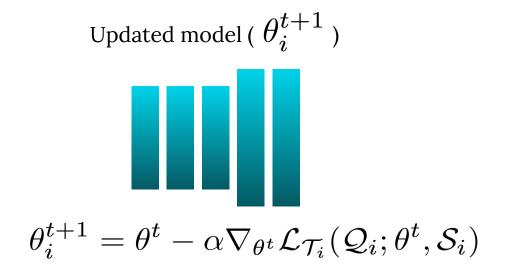
Transference from source (meta-train) task i to target (meta-test) task j

#2. Update the initial model with respect to task *i*b) calculate the loss of adapted model using query set of source task *i*



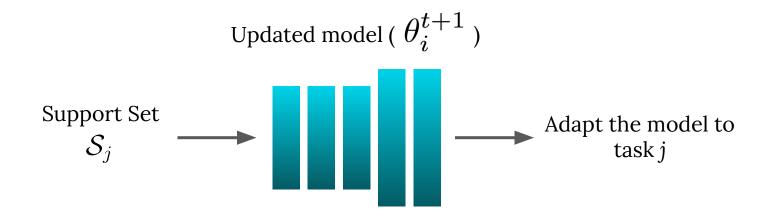
Transference from source (meta-train) task i to target (meta-test) task j

#2. Update the initial model with respect to task *i*c) use the gradient of the loss to update model parameters



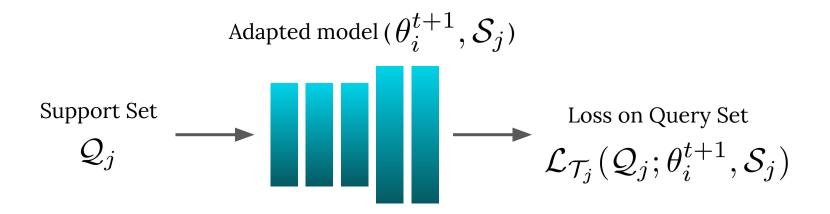
Transference from source (meta-train) task i to target (meta-test) task j

#3. Calculate the loss of task j with updated model parametersa) adapt model using the support set of target task j

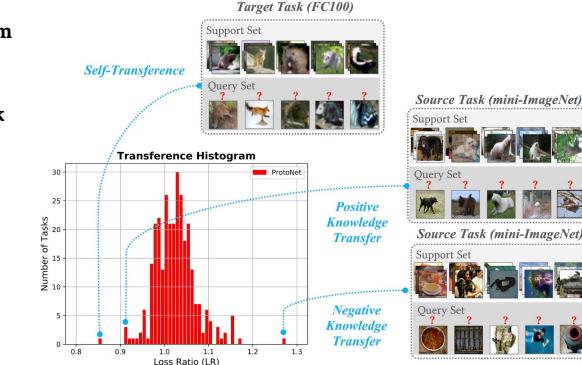


Transference from source (meta-train) task i to target (meta-test) task j

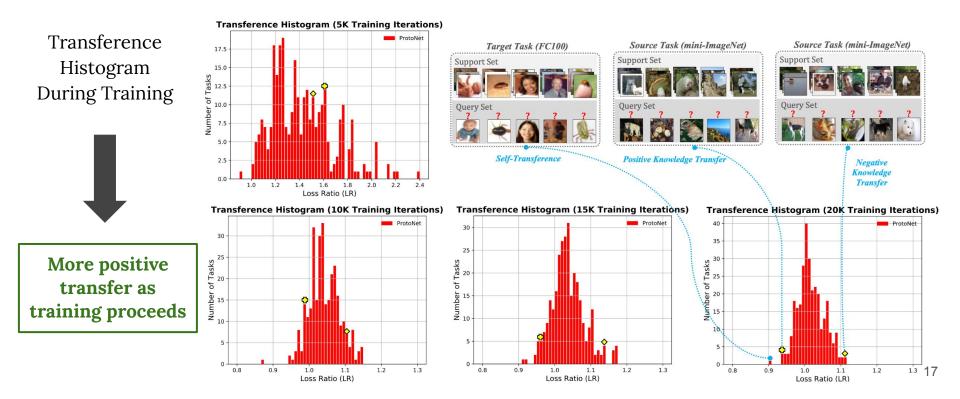
#3. Calculate the loss of task *j* with updated model parametersb) calculate the loss of adapted model using query set of target task *j*



Transference histogram from 300 meta-train mini-ImageNet tasks to a meta-test FC100 target task



LR<1: Positive Knowledge Transfer LR>1: Negative Knowledge Transfer



Towards Reducing Negative Knowledge Transfer

Analysis results

both positive and negative transference

How does MTL reduce negative transfer?

hard parameter sharing and grouping tasks during training

Ideal learning episodes in our episodic training scenario most compatible with meta-test task

Grouping and hard parameter sharing is not possible in episodic training

- 1. meta-test tasks are unseen and unknown during meta-training
- 2. episodic training involves tens of thousands of tasks

MMAML General Framework [1]

Task Encoder

 $\boldsymbol{v}_{\mathcal{T}} = h_{\varphi}(\mathcal{S}_{\mathcal{T}})$

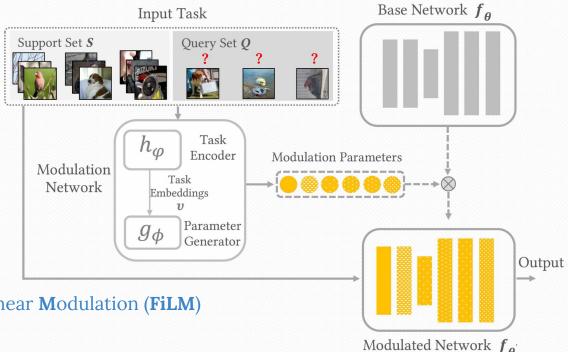
Parameter Generator

 $\boldsymbol{\omega}_{\mathcal{T}} = g_{\phi}(\boldsymbol{v}_{\mathcal{T}})$

Modulation Scheme

 $oldsymbol{\omega}_{\mathcal{T}} = \{oldsymbol{\eta}_{\mathcal{T}},oldsymbol{\gamma}_{\mathcal{T}}\}$

 $\hat{\mathbf{Y}}_i = \eta_i \mathbf{Y}_i + \gamma_i$ Feature-wise Linear Modulation (FiLM)



[1] Vuorio, Risto, et al. "Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation." Advances in Neural Information Processing Systems 32 (2019): 1-12.

Limitation of FiLM for Multimodal Meta-Learning

Convolution operator for each channel

$$\mathbf{Y}_i = \mathbf{W}_i * \mathbf{X} + b_i$$

Re-writing FiLM modulation

$$\hat{\mathbf{Y}}_i = (\eta_i \mathbf{W}_i) * \mathbf{X} + (\eta_i b_i + \gamma_i)$$

New interpretation of FiLM modulation: Convolution with modulated parameters

$$\hat{\mathbf{W}}_i = \eta_i \mathbf{W}_i$$
 $\hat{b}_i = \eta_i b_i + \gamma_i$
modulated kernel modulated bias

Proposed Kernel ModuLation (KML)

Modulate every parameter within network

$$\hat{\mathbf{W}}_{\mathcal{T}}^{l} = \mathbf{W}^{l} \odot (\mathbf{J} + \mathbf{M}^{l}(\boldsymbol{v}_{\mathcal{T}}, \phi))$$
$$\hat{\mathbf{b}}_{\mathcal{T}}^{l} = \mathbf{b}^{l} + \Delta \mathbf{b}^{l}(\boldsymbol{v}_{\mathcal{T}}, \phi)$$

Modulated parameters for whole network

$$\hat{\theta}_{\mathcal{T}} = \{\hat{\mathbf{W}}_{\mathcal{T}}^1, \dots, \hat{\mathbf{W}}_{\mathcal{T}}^L, \hat{\mathbf{b}}_{\mathcal{T}}^1, \dots, \hat{\mathbf{b}}_{\mathcal{T}}^L\}$$

Generator Design for KML

use **MLP** to be computationally efficient Limitation: large number of required parameters in MLP

Proposed Simplified Structure for Parameter Generator

Use multiple smaller MLPs instead of a large one

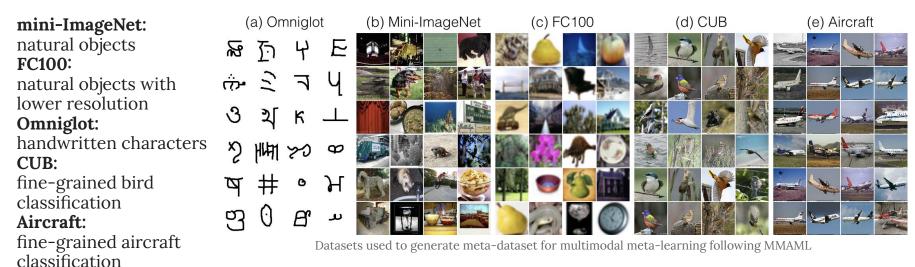
$$\mathbf{M}^{l}(\boldsymbol{v}_{\mathcal{T}},\phi) = \mathbf{g}_{\phi_{1}}^{l}(\boldsymbol{v}_{\mathcal{T}}) \otimes \mathbf{g}_{\phi_{2}}^{l}(\boldsymbol{v}_{\mathcal{T}})$$

 $\Delta \mathbf{b}^{l}(\boldsymbol{v}_{\mathcal{T}}, \phi) = \mathbf{g}_{\phi_{3}}^{l}(\boldsymbol{v}_{\mathcal{T}})$

Reduces the required parameters by a factor of 152Improves generalization performance



Datasets



2Mode[†]: mini-ImageNet and FC100; 2Mode: mini-ImageNet and Omniglot
3Mode: mini-ImageNet, Omniglot and FC100; 5Mode: mini-ImageNet, Omniglot, FC100, AIRCRAFT and CUB

Multimodal Few-Shot Classification Results

Setup		Method					
~~~p	-	MAML [19]*	Multi-MAML	$\mathbf{MMAML}\left[1\right]^{*}$	MMAML+KML (ours)		
2Mode [†]	1-shot	40.53±68%	39.27±0.76%	39.11±0.62%	40.73±0.66%		
	5-shot	54.11±0.63%	53.51±0.72%	$52.02{\pm}0.63\%$	53.72±0.60%		
2Mode	1-shot	$65.18{\pm}0.61\%$	66.77±0.68%	67.67±0.63%	68.01±0.59%		
	5-shot	$74.18{\pm}0.57\%$	$73.07 {\pm} 0.61\%$	$73.52{\pm}0.71\%$	77.02±0.66%		
3 Mode	1-shot	54.40±0.56%	56.01±0.66%	57.35±0.61%	57.68±0.59%		
	5-shot	66.51±0.54%	$65.92{\pm}0.62\%$	64.21±0.57%	$67.12{\pm}0.55\%$		
5Mode	1-shot	47.19±0.49%	48.33±0.58%	49.53±0.50%	50.31±0.49%		
	5-shot	58.13±0.48%	59.20±0.52%	58.89±0.47%	60.51±0.47%		

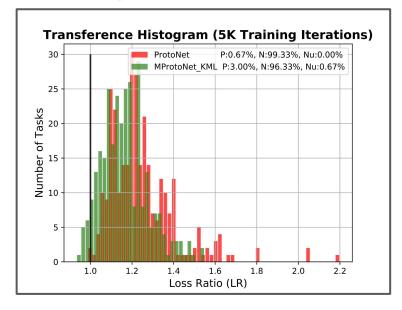
#### **Multimodal Few-Shot Classification Results**

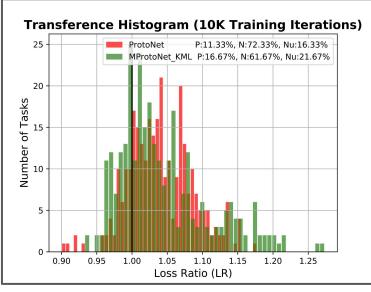
Setup		Method				
I		<b>ProtoNet</b> [11]**	Multi-ProtoNet	MProtoNet [1]**	MProtoNet+KML (ours)	
2Mode [†]	1-shot	43.05±0.58%	43.42±0.56%	43.57±0.59%	44.40±0.65%	
	5-shot	57.70±0.59%	56.73±0.64%	56.03±0.64%	59.31±0.62%	
2Mode	1-shot	69.55±0.54%	70.17±0.61%	$70.60{\pm}0.56\%$	73.69±0.52%	
	5-shot	75.12±0.41%	75.33±0.46%	$75.72{\pm}0.47\%$	79.82±0.40%	
3 Mode	1-shot	58.14±0.49%	59.89±0.50%	59.62±0.54%	62.08±0.54%	
	5-shot	66.84±0.44%	67.03±0.44%	67.51±0.47%	70.03±0.43%	
5Mode	1-shot	49.31±0.53%	50.69±0.57%	51.75±0.52%	56.72±0.46%	
	5-shot	58.91±0.51%	59.88±0.54%	59.95±0.42%	64.91±0.38%	

#### Transference Results (mini-ImageNet $\Rightarrow$ FC100)

$$LR_{i \to j} = \frac{\mathcal{L}_{\mathcal{T}_j}(\mathcal{Q}_j; \theta_i^{t+1}, \mathcal{S}_j)}{\mathcal{L}_{\mathcal{T}_j}(\mathcal{Q}_j; \theta^t, \mathcal{S}_j)} \quad \blacksquare$$

LR<1: Positive Knowledge Transfer







#### Research gaps in multimodal meta-learning

How can we measure interaction between few-shot tasks? How can we improve the generalization performance?

#### **Proposed work**

Adapt transference idea from MTL to quantify interaction between few-shot tasks A new interpretation of FiLM scheme Kernel modulation to improve generalization

#### **Experimental Results**

Significant improvement over previous state-of-the art in both micro and macro-level

Transference analysis and proposed KML can be extended to **conventional meta-learning** (Supplementary Material).