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Outline

• Quick review of distributed optimization; parallel SGD; communication cost

• Decentralized SGD: efficient communication through partial-averaging

• Exponential topology enables both fast and high-performance training

• Validate our claims over various large-scale deep training tasks 1

1All implementations are based on the open-source library BlueFog, which is available at GitHub:
https://github.com/Bluefog-Lib/bluefog
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Data parallel training
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Formulate DNN training as distributed optimization

• A network of n nodes (GPUs) collaborate to solve the problem:

min
x∈Rd

f(x) = 1
n

n∑
i=1

fi(x), where fi(x) = Eξi∼DiF (x; ξi).

• Each component fi : Rd → R is local and private to node i

• Random variable ξi denotes the local data that follows distribution Di

• Each local distribution Di may be different; data heterogeneity
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Parallel stochastic gradient descent (SGD)

g
(k)
i = ∇F (x(k); ξ(k)

i ) (Local compt.)

x(k+1) = x(k) − γ

n

n∑
i=1

g
(k)
i (Global comm.)

• Each node i samples data ξ(k)
i and computes gradient ∇F (x(k); ξ(k)

i )

• All nodes synchronize (i.e. global averaged) to update model x

• Global average incurs significant comm. cost; hinders training scalability
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Global average via Parameter-Server2

Parameter Server

2[Li et.al., 2014]
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Global average via Ring-Allreduce3

3[Patarasuk and Yuan, 2009]
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Decentralized SGD: topology

• Assume we connect all nodes with some topology (n=16)

• Communication is only allowed between neighbors

• No global information is computed.
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Decentralized SGD: weight matrix

• The weight matrix associated with the topology is defined as

wij

{
> 0 if node j is connected to i, or i = j;

= 0 otherwise.

• We assume W is doubly stochastic: W1 = 1 and 1TW = 1T .

• An example:

Figure: A directed ring topology and its associated combination matrix W .
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Decentralized SGD: recursion4

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

wijx
(k+ 1

2 )
j (Partial averaging)

• Decentralized SGD (D-SGD) = local SGD update+ paritial averaging

• Per-iteration communication: Ω(dmax)� Ω(n) when topology is sparse,
where d is the degree of a node.

• Incurs Ω(1) comm. overhead on sparse topology (ring or grid)

4[Lopes and Sayed, 2008; Nedic and Ozdaglar, 2009; Chen and Sayed, 2012]
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However, D-SGD has slower convergence

• The efficient communication comes with a cost: slow convergence

• Partial averaging is less effective to aggregate information

• The average effectiveness can be evaluated by:

ρ = max{|λ2(W )|, |λN (W )|},

where λi is the i-th largest eigenvalue and 1− ρ is also commonly referred
as spectral gap.

• Assume W is doubly-stochastic, it holds that ρ ∈ (0, 1).

• Well-connected topology has ρ→ 0, e.g. fully-connected topology

• Sparsely-connected topology has ρ→ 1, e.g., ring has ρ = O(1− 1
n2 )
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Convergence rate of D-SGD

• Convergence comparison (non-convex; i.i.d data distribution)5:

P-SGD : 1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ2
√
nT

)
D-SGD : 1

T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ2
√
nT

+ nσ2

T (1− ρ)︸ ︷︷ ︸
extra overhead

)

where σ2 is the gradient noise, and T is the number of iterations.

• D-SGD can asymptotically converge as fast as P-SGD when T →∞; the
first term dominates

• But it requires more iteration (i.e., T has to be large enough) to reach
that stage due to the extra overhead in rate caused by partial averaging

5[Lian et.al. 2017; Assran, Ballas, Rabbat 2019; Koloskova et.al. 2020]
13 / 33



Trade-off between communication and convergence

• Recall per-iter comm. Ω(dmax) and rate’s extra overhead Ω((1− ρ)−1)

• Dense topology: expensive comm. but faster convergence

• Sparse topology: cheap comm. but slower convergence
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Static exponential graph

• Static exponential graph6 is widely-used in deep training

• Empirically successful but less theoretically understood

• Each node links to neighbors that are 20, 21, · · · , 2blog2(n−1)c hops away

• In the figure, node 1 connects to 2, 3 and 5.

6[Lian et.al. 2017; Lian et.al. 2018; Assran, Ballas, and Rabbat 2019]
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Static exponential graph

• The weight matrix W associated with static exp. graph is defined as

wexp
ij =

{
1

dlog2(n)e+1 if log2(mod(j − i, n)) is an integer or i = j

0 otherwise.

• An illustrating example

Figure: A 6-node static exponential graph and its associated weight matrix.
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Static exponential graph: spectral gap

• Each node has dlog2(n)e neighbors; per-iter comm. cost is Ω(log2(n))

• The following theorem clarifies that ρ(W exp) = O(1− 1/ log2(n)); a
non-trivial proofs; requires smart utilization of Discrete Fourier transform.

Theorem
Let τ = dlog2(n)e, and ρ as the second largest eigenvalue in magnitude of W ,
(1− ρ is also known as the spectral gap). It holds that

ρ(W exp)


= 1− 2

τ + 1 , when n is even

< 1− 2
τ + 1 , when n is odd

Further, it also holds that ‖W − 1
n
11T ‖2 = ρ(W exp).
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Spectral gap: numerical illustration
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Figure: Illustration of the spectral gaps for ring, grid and static exp. graphs.
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One-peer exponential graph

• Static exponential graph has Ω(log2(n)) per-iteration comm.

• Such overhead is still more expensive than ring or grid

• Split exponential graph into a sequence of one-peer realizations7

• Each realization has Ω(1) per-iteration communication

7[Assran, Ballas, and Rabbat 2019]
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One-peer exponential graph: weight matrix

• We let τ = dlog2(n)e. The weight matrix W (k) is time-varying

w
(k)
ij =


1
2 if log2(mod(j − i, n)) = mod(k, τ)
1
2 if i = j

0 otherwise.

• An illustrating example
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Decentralized SGD over one-peer exponential graph

• The D-SGD recursion over one-peer exponential graph:

Sample W (k) over one-peer exponential graph

x
(k+ 1

2 )
i = x

(k)
i − γ∇F (x(k)

i ; ξ(k)
i ) (Local update)

x
(k+1)
i =

∑
j∈Ni

w
(k)
ij x

(k+ 1
2 )

j (Partial averaging)

• One-loop algorithm; each node has one neighbor; per-iter comm. is Ω(1)

• Since each realization is sparser than static exp., will it enable DSGD with
larger extra overhead in rate?
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One-peer exp. graphs: periodic exact average

Theorem (Periodic Global-averaging)

Suppose τ = log2(n) is a positive integer. It holds that

W (k+`)W (k+`−1) · · ·W (k+1)W (k) = 1
n
11

T

for any integer k ≥ 0 and ` ≥ τ − 1.

While each realization of one-peer graph is sparser, a sequence of one-peer
graphs will enable effective global averaging.
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Applying one-peer exp. graphs to DSGD

Assumption
(1) Each fi(x) is L-smooth; (2) Each gradient noise is unbiased and has
bounded variance σ2; (3) Each local distribution Di is identical

Theorem (DSGD convergence with one-peer exp.)

Under the above assumptions and with γ = O(1/
√
T ), let τ = log2(n) be an

integer, DSGD with one-peer exponential graph will converge at

1
T

T∑
k=1

E‖∇f(x̄(k))‖2 = O
(

σ2
√
nT

+ n log2(n)σ2

T︸ ︷︷ ︸
extra overhead

)

Convergence rate for decentralized momentum SGD (DmSGD) with
heterogeneous data distributions is also established in the paper.
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Static exp. v.s. one-peer exp.

• Convergence rate for DSGD over static and one-peer exp. graphs

Static exp. O
(

σ2
√
nT

+ nσ2

T (1− ρ)

)
(where 1− ρ = O(1/ log2(n)))

One-peer exp. O
(

σ2
√
nT

+ n log2(n)σ2

T

)
• DSGD with one-peer exp. converges as fast as static exp. in terms of the

established bounds; a surprising result.

• DSGD with both graphs are with the same rate’s overhead O(log2(n))

• The same results hold for heterogeneous data scenario, and for DmSGD.
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One-peer graph is the state-of-the-art topology

Topology Per-iter. Comm. Extra overhead in rate (iid)

Ring Ω(2) Ω(n2)
Star Ω(n) Ω(n2)

2D-Grid Ω(4) Ω(n)
2D-Torus Ω(4) Ω(n)

1
2 -RandGraph Ω(n2 ) Ω(1)

Static Exp. Ω(log2(n)) Ω(log2(n))
One-peer Exp. Ω(1) Ω(log2(n))

• Both static and one-peer exp are nearly best (up to log2(n)) in terms of
Per-iter comm. and extra overhead in rate.

• Since one-peer exp. incurs less per-iter comm., it is recommended for DL.
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Experiments

We focuse on two main metrics:

• Wall-clock time to finish K epochs of training; measures per-iter comm.

• Validation accuracy after K epochs of training; measures convgt. rate

We run the experiment through BlueFog – a library dedicated for running
large-scale decentralized algorithms

Available at https://github.com/Bluefog-Lib/bluefog
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Convergence curves: one-peer exp. v.s. static exp.

Image classification: ResNet-50 for ImageNet; 8× 8 = 64 GPUs.
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Figure: DmSGD over one-peer exp. converges as fast as over static exp.
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Comparing different models/methods

• setting: ImageNet; 8× 8 = 64 GPUs; diff = o.e - s.e.

• both topo. achieve similar accuracy across different models and algorithms

• accuracy difference is minor (except for MobileNet with DmSGD)

• QG-DmSGD and DmSGD outperform PSGD in ResNet-50
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Scaling effects for DmSGD over various topologies

Image classification: ResNet-50 for ImageNet;

• training time (32 nodes): OE < Ring < Grid < SE < Random

• accuracy (32 nodes): Random ≈ SE ≈ OE > Grid > Ring

• one-peer exp. promises fast and high-quality deep training

• one-peer exp. has the best linear speedup among these topologies
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Summary

• Both per-iter comm. and convergence overhead of exponential graphs are
nearly the best (up to log2(n) factors) among known topologies

• While one-peer exp. is sparser, it can converge as fast as static exp.

• One-peer exponential graph is recommended for decentralized DL
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