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= Quick review of distributed optimization; parallel SGD; communication cost
= Decentralized SGD: efficient communication through partial-averaging

= Exponential topology enables both fast and high-performance training

Validate our claims over various large-scale deep training tasks *

LAl implementations are based on the open-source library BlueFog, which is available at GitHub:
https://github.com/Bluefog-Lib/bluefog
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Data parallel training
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Formulate DNN training as distributed optimization 3%
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= A network of n nodes (GPUs) collaborate to solve the problem:

min  f(z) = = 3 fi(e), where fi(e) = e, F(2: ).
=1

z€ERA
= Each component f; : RY — R is local and private to node i
= Random variable &; denotes the local data that follows distribution D;

= Each local distribution D; may be different; data heterogeneity
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(k> = VF(z™; §(k)) (Local compt.)

x x - Zgl (Global comm.)
= Each node i samples data 5( ) and computes gradient VF( f(k))

= All nodes synchronize (i.e. global averaged) to update model

= Global average incurs significant comm. cost; hinders training scalability

6/33



Global average via Parameter-Server? S,
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2[Li et.al., 2014]
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Global average via Ring-Allreduce® S,
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3[Patarasuk and Yuan, 2009]
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Decentralized SGD: topology
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= Assume we connect all nodes with some topology (n=16)

= Communication is only allowed between neighbors

= No global information is computed.
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Decentralized SGD: weight matrix S,
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= The weight matrix associated with the topology is defined as

W {> 0 if node j is connected to 4, or i = j;
ij

=0 otherwise.

= We assume W is doubly stochastic: W1 =1 and 17W = 17.

= An example:
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Figure: A directed ring topology and its associated combination matrix W.

10/33



4

Decentralized SGD: recursion
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(k). g§’“>) (Local update)

7

<k+1> Z wi (’H' ) (Partial averaging)
JEN;

1
2T = ac(.k) —YVF(x

(3

= Decentralized SGD (D-SGD) = local SGD update+ paritial averaging

= Per-iteration communication: Q(dmax) < €2(n) when topology is sparse,
where d is the degree of a node.

= Incurs Q(1) comm. overhead on sparse topology (ring or grid)

4[Lopes and Sayed, 2008; Nedic and Ozdaglar, 2009; Chen and Sayed, 2012]
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However, D-SGD has slower convergence
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= The efficient communication comes with a cost: slow convergence
= Partial averaging is less effective to aggregate information
= The average effectiveness can be evaluated by:

p = max{[A2(W)], |An (W)]},

where \; is the i-th largest eigenvalue and 1 — p is also commonly referred
as spectral gap.

= Assume W is doubly-stochastic, it holds that p € (0,1).
= Well-connected topology has p — 0, e.g. fully-connected topology

= Sparsely-connected topology has p — 1, e.g., ring has p = O(1 — —3)

n2
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Convergence rate of D-SGD

= Convergence comparison (non-convex; i.i.d data distribution)?®:

T
o1 —()\ )12 — o’
P-SGD : ?kZ]EHVf(a: ) _o( )
=1

vnT
DSGD: ~ §T BV (V)P = 0( ”L v e )
= N—_——

extra overhead

where o2 is the gradient noise, and T is the number of iterations.

= D-SGD can asymptotically converge as fast as P-SGD when T' — oo; the
first term dominates

= But it requires more iteration (i.e., 7" has to be large enough) to reach
that stage due to the extra overhead in rate caused by partial averaging

5[Lian et.al. 2017; Assran, Ballas, Rabbat 2019; Koloskova et.al. 2020]
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Trade-off between communication and convergence

= Recall per-iter comm. Q(dmax) and rate’s extra overhead Q((1 — p)~!)
= Dense topology: expensive comm. but faster convergence

= Sparse topology: cheap comm. but slower convergence
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Static exponential graph

= Static exponential graph® is widely-used in deep training
= Empirically successful but less theoretically understood
= Each node links to neighbors that are 20,21, ...  2lleg2(n=D] hopg away

= In the figure, node 1 connects to 2,3 and 5.

6[Lian et.al. 2017; Lian et.al. 2018; Assran, Ballas, and Rabbat 2019]
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= The weight matrix W associated with static exp. graph is defined as

WP = {ﬂogz(n)]ﬂ if log, (mod(j — 4,n)) is an integer or i = j

0 otherwise.

= An illustrating example
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Figure: A 6-node static exponential graph and its associated weight matrix.
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» Each node has [log,(n)] neighbors; per-iter comm. cost is 2(log,(n))

= The following theorem clarifies that p(W®) = O(1 — 1/log,(n)); a

non-trivial proofs; requires smart utilization of Discrete Fourier transform.

Theorem

Let 7 = [log,(n)], and p as the second largest eigenvalue in magnitude of W,
(1 — p is also known as the spectral gap). It holds that

when n is even

x o T+1’
p(WP)
1— ——, whenn is odd
T4+ 1

Further, it also holds that ||W — 1117 ||, = p(W**P).
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Spectral gap: numerical illustration
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Figure: lllustration of the spectral gaps for ring, grid and static exp. graphs.
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One-peer exponential graph

= Static exponential graph has Q(log,(n)) per-iteration comm.
= Such overhead is still more expensive than ring or grid

= Split exponential graph into a sequence of one-peer realizations’

) N :
2 0 2) 0 2) (0 2
3) El: :[% 5@ 5@
. \4/ 4

-wi j
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iten 1

static exp2 ,_. iteration & ——————» iteration k + 2

= Each realization has (1) per-iteration communication

"[Assran, Ballas, and Rabbat 2019]
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One-peer exponential graph: weight matrix SR,
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= We let 7 = [log,(n)]. The weight matrix W *) is time-varying

if logy(mod(j — ¢,n)) = mod(k, 7)

N[

w® =

ij ifi=j

1
2
0 otherwise.

= An illustrating example

@
© @

5 (3)
@

(=Jew](+]

O O O O NN
o O ONENE O
O OvkENE O O
oN=N- O O O
N=N- O © O O
N O O O ON

20/33



Decentralized SGD over one-peer exponential grap i,
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= The D-SGD recursion over one-peer exponential graph:

Sample W*) over one-peer exponential graph
1
252 =2 v RER ™) (Local update)

2T = Z w® g+ 3) (Partial averaging)

2 ) J
JEN;

= One-loop algorithm; each node has one neighbor; per-iter comm. is (1)

= Since each realization is sparser than static exp., will it enable DSGD with

larger extra overhead in rate?
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One-peer exp. graphs: periodic exact average

Theorem (PERIODIC GLOBAL-AVERAGING)
Suppose T = log,(n) is a positive integer. It holds that
WO o= | kD () l]l]lT
n

for any integer k > 0 and £ > 7 — 1.

While each realization of one-peer graph is sparser, a sequence of one-peer

graphs will enable effective global averaging.
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Applying one-peer exp. graphs to DSGD

Assumption

(1) Each fi(z) is L-smooth; (2) Each gradient noise is unbiased and has
bounded variance o?; (3) Each local distribution D; is identical

Theorem (DSGD CONVERGENCE WITH ONE-PEER EXP.)

Under the above assumptions and with v = O(1/+/T), let T = log,(n) be an

integer, DSGD with one-peer exponential graph will converge at

i
1 _ o? nlog,(n)o?
7 IV = 0 o+ M)

k=1 n N———

extra overhead

Convergence rate for decentralized momentum SGD (DmSGD) with

heterogeneous data distributions is also established in the paper.

“NEURAL INFORMATION
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Static exp. v.s. one-peer exp. S,
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= Convergence rate for DSGD over static and one-peer exp. graphs

O(\/TT + m) (where 1 — p = O(1/log,(n)))

Static exp.

o2 n nlog2(n)02)

One-peer exp. O(
peere®. U\ Var T

= DSGD with one-peer exp. converges as fast as static exp. in terms of the
established bounds; a surprising result.
= DSGD with both graphs are with the same rate’s overhead O(log,(n))

= The same results hold for heterogeneous data scenario, and for DmSGD.
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One-peer graph is the state-of-the-art topology N,
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Topology Per-iter. Comm. Extra overhead in rate (iid)
Ring Q(2) Q(n?)
Star Q(n) Q(n?)
2D-Grid Q(4) Q(n)
2D-Torus Q(4) Q(n)
1-RandGraph Q%) Q1)
Static Exp. Q(logy(n)) Q(logy(n))
One-peer Exp. Q(1) Q(logy(n))

= Both static and one-peer exp are nearly best (up to log,(n)) in terms of
Per-iter comm. and extra overhead in rate.

= Since one-peer exp. incurs less per-iter comm., it is recommended for DL.
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Experiments
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We focuse on two main metrics:

= Wall-clock time to finish K epochs of training; measures per-iter comm.

= Validation accuracy after K epochs of training; measures convgt. rate

We run the experiment through BlueFog — a library dedicated for running
large-scale decentralized algorithms

C%O Bluefoy

Available at https://github.com/Bluefog-Lib/bluefog
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Convergence curves: one-peer exp. v.s. static exp.
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Image classification: ResNet-50 for ImageNet; 8 x 8 = 64 GPUs.

Resnet50 (8x8x32) Val Acc on ImageNet Dataset

Resnet50 (8x8x32) Training Loss on ImageNet Dataset
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Figure: DmSGD over one-peer exp. converges as fast as over static exp.
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Comparing different models/methods

MODEL RESNET-50 MOBILENET-V2 EFFICIENTNET
ToPOLOGY STATIC ONE-PEER DIFF STATIC ONE-PEER DIFF STATIC ONE-PEER DIFF

PARALLEL SGD 76.21 - - 70.12 - - 77.63 - -
VANILLA DMSGD 76.14 76.06  -0.08 69.98 69.81 -0.17 77.62 77.48  -0.14
DMSGD 76.50 76.52  +0.02 69.62 69.98 +0.36 77.44 77.51  +0.07
QG-DMSGD 76.43 76.35  -0.08 69.83 69.81 -0.02 77.60 7772 +0.12

= setting: ImageNet; 8 x 8 = 64 GPUs; diff = o.e - s.e.
= both topo. achieve similar accuracy across different models and algorithms
= accuracy difference is minor (except for MobileNet with DmSGD)

= QG-DmSGD and DmSGD outperform PSGD in ResNet-50
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Scaling effects for DmSGD over various topologies

Image classification: ResNet-50 for ImageNet;

Table 1: Top-1 validation accuracy(%) and training time (hours) after 90 epochs.

NODES 4(4x8 GPUs) 8(8x8 GPUs) 16(16x8 GPUs) 32(32x8 GPUs)
TOPOLOGY ACC. TIME ACC. TIME ACC. TIME ACC. TIME
RING 76.16 11.6 76.14 6.5 76.16 3.3  75.62 1.8
GRID 76.10 11.6 7639 6.7 7592 34 7580 2.0
RANDOM GRAPH 76.03 115 76.07 7.1 7625 6.7 7632 4.7
STATIC EXP.  76.26 11.6 7650 6.9 76,50 41 7629 2.5

ONE-PEER EXP. 76.34 11.1 76.52 5.7 76.47 2.8 76.27 1.5

= training time (32 nodes): OE < Ring < Grid < SE < Random
= accuracy (32 nodes): Random ~ SE ~ OE > Grid > Ring
= one-peer exp. promises fast and high-quality deep training

= one-peer exp. has the best linear speedup among these topologies
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Summary

= Both per-iter comm. and convergence overhead of exponential graphs are

nearly the best (up to log,(n) factors) among known topologies
= While one-peer exp. is sparser, it can converge as fast as static exp.

= One-peer exponential graph is recommended for decentralized DL
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