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Introduction

Invertible GAN

Calculate

Likelihood

Trustworthy

NOT TrustworthyNegative

Likelihood ⇧

Negative

Likelihood ⇩

• Making GAN invertible, GAN can be trained with both likelihood loss and GAN loss.

• When sharing with Trustworthy people, decrease GAN loss and the negative likelihood loss

• When sharing with Untrustworthy people, decrease GAN loss, but sacrifice the negative likelihood 

loss.

Proposed Concept



Related Work
Neural ODE – Invertible Function

• Solve 𝑧(𝑡1), given the initial condition 𝑧(𝑡0).

•
𝜕𝑧
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is parameterized by 𝜃𝑓.

𝑧(𝑡1) = 𝑧(𝑡0) + 𝑡0
𝑡1 𝑓 𝑧 𝑡 , 𝑡, 𝜃𝑓 𝑑𝑡, 
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𝜕𝑡
= 𝑓 𝑧 𝑡 , 𝑡, 𝜃𝑓
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Related Work
Neural ODE, Ffjord – Efficient Determinant Calculation
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| is main bottle neck of calculating likelihood. 

• It usually costs O 𝐷3 or O(𝐷2), when 𝐷 is the size of data dimension.
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• By Hutchinson estimator, 𝑙𝑜𝑔𝑝(𝑧(𝑡1)) can be efficiently calculated. (Ffjord)

• The cost of calculating Hutchinson estimator is slightly larger than that of evaluating 𝑓, since 

calculating 𝜖𝑇
𝜕𝑓
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Proposed Model
ITGAN(Invertible Tabular GAN)

• ITGAN synthesizes the data on hidden space, and Decoder recover the real data from that. (Green)

• There are 3 parts in ITGAN. (Red: AutoEncoder, Orange: GAN, Blue: Likelihood(Log-density))



Proposed Model
ITGAN(Invertible Tabular GAN) - AutoEncoder

• AutoEncoder makes hidden space, and GAN operates on that.

• Using AutoEncoder meets the invariant dimensionality requirement of NODEs and, relieves the burden of 

GAN by separating the labor.

• AutoEncoder is learned by 𝐿𝐴𝐸, where ℎ𝑓𝑎𝑘𝑒 is a reconstructed hidden vector by Encoder(Decoder(ℎ𝑓𝑎𝑘𝑒)).

𝐿𝐴𝐸 = 𝐿𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 +
1

2
||ℎ𝑟𝑒𝑎𝑙||

2 +
1

2
||ℎ𝑓𝑎𝑘𝑒 − ℎ𝑓𝑎𝑘𝑒||

2



Proposed Model
ITGAN(Invertible Tabular GAN) – GAN, Likelihood(Log-density)

• GAN generates hidden vector with Neural ODE. The integral time is 0 ~ 1.

• GAN is the same with the original WGAN-GP model, except the invertible structure and the operation on hidden 

space made by autoencoder.

• GAN is trained with 𝐿𝐺𝐴𝑁 and 𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦, where 𝐿𝐺𝐴𝑁 is the WGAN-GP loss, and 𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦 is negative log-density 

regularization calculated using Hutchison Estimator.

𝑅𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≝ 𝛾𝐸[−𝑙𝑜𝑔 ො𝑝(𝐸(𝑥))]𝑥~𝑝𝑑𝑎𝑡𝑎

ℎ𝑓𝑎𝑘𝑒 = 𝑧 0 + න
0

1

𝑓 𝑧 𝑡 , 𝑡; 𝜃𝑔 𝑑𝑡



Proposed Model
Training Algorithm

• AutoEncoder 

- Train with 𝐿𝐴𝐸 every iteration

- Training the Encoder with 𝐿𝐺𝐴𝑁 helps the discriminator better distinguish       

real and fake hidden vectors by learning a hidden vector in favor of the 

discriminator.

• GAN, Likelihood(Log-density)

- generator, discriminator are trained with 𝐿𝐺𝐴𝑁 every each period, 

where AutoEncoder is trained every iterations. Because Generator 

and Discriminator rely on the hidden vector by the AutoEncoder.

- log-density regularization also has a period, since frequent log-density 

regularization negatively affects the entire training progress.
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Experiments
Evaluation Score(Binary Classification)

Test score of Regression/Classification Machine Learning Model 

trained with synthesized samples of each generative model
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Experiments
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Experiments
Evaluation Score

• ITGAN(Q) is a proposed model decreasing the negative log-

density, where ITGAN(L) is that sacrificing the negative log-

density. ITGAN is without log-density regularizer.

• Dist.(real-fake distance) is the average of the distance from 

each fake record to its closest real record

• All kinds of ITGAN achieve the best score in almost cases.

• Among ITGAN, ITGAN(Q) is the best.

• Despite sacrificing the log-density, ITGAN(L) achieves the 

reasonable scores.

• Dist. of ITGAN(L) is the biggest.
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Experiments
Privacy Attack

• Table shows privacy attack success scores. High score means being more vulnerable to privacy attack.

• ITGAN(L) achieves the lowest privacy attack sucess scores, however before results prove that ITGAN(L) 

has reasonable machine learning evaluation scores.



Experiments
Ablation Study: ITGAN vs ITGAN(Q,L)

• The above figure(figure1) shows real-fake distance and the below figure (figure2) shows t-SNE visualization.

• It shows the effect of log-density

• ITGAN(Q) generates the synthesized data more similar to oringal data than ITGAN.

• However, ITGAN(L)’s samples are very different with original data.

• These show that log-density regularizer works as intended.



Experiments
Sensitivity Analyses

25

• 𝛾 is the coefficient of negative log-density regularizer

• When 𝛾 = 0.01, the evaluation scores(Machine Learning score) are the best.

• As 𝛾 decreases, real-fake distance (Dist.) increases. 

• Similarly the lower 𝛾 achieves the lower attack success score.



Conclusion

ITGAN

• Successfully combine GAN and log-density regularization

• ITGAN can adjust trade-off between synthesis quality and the real-fake distance.

• In some Multi-class or/and imbalanced datasets, there is a room for improving.



Thank You !


