

Invertible Tabular GANs: Killing Two Birds with One Stone for Tabular Data Synthesis

JAEHOON LEE, Jihyen Hyeong, Jinsung Jeon, Noseong Park, Jihhon Cho

Contents

- Introduction
- Related Work
- Proposed model
- Experiments
- Conclusion

Motivation

- lacksquare
- ullet

Tabular data usually has Sensitive Information which can cause privacy problem. We share our data with not only Trustworthy people but also Untrustworthy people

Untrustworthy

Motivation

- ullet

 \bullet when the Likelihood(Log-density) of synthesized data is high.

Tabular data usually has Sensitive Information which can cause privacy problem. We share our data with not only Trustworthy people but also Untrustworthy people

Untrustworthy

Privacy Information can be extracted easily from data synthesized by generative models,

Motivation

- \bullet

- when the Likelihood(Log-density) of synthesized data is high.
- \bullet

Tabular data usually has Sensitive Information which can cause privacy problem. We share our data with not only Trustworthy people but also Untrustworthy people

Untrustworthy

Privacy Information can be extracted easily from data synthesized by generative models,

VAEs generates blurred samples but achieves a better likelihood than GANs.

Proposed Concept

- \bullet
- loss.

Making GAN invertible, GAN can be trained with both likelihood loss and GAN loss. When sharing with Trustworthy people, decrease GAN loss and the negative likelihood loss When sharing with Untrustworthy people, decrease GAN loss, but sacrifice the negative likelihood

Related Work Neural ODE – Invertible Function

- Solve $z(t_1)$, given the initial condition $z(t_0)$.
- $\frac{\partial z}{\partial t}$ is parameterized by θ_f .

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta_f) dt, \qquad \frac{\partial z}{\partial t} = f(z(t), t, \theta_f)$$

Related Work Neural ODE – Invertible Function

- Solve $z(t_1)$, given the initial condition $z(t_0)$.
- $\frac{\partial z}{\partial t}$ is parameterized by θ_f .

$$z(t_1) = z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta_f) dt, \qquad \frac{\partial z}{\partial t} = f(z(t), t, \theta_f)$$

• Reconstruct $z(t_0)$ from $z(t_1)$.

$$z(t_0) = z(t_1) + \int_{t_1}^{t_0} f(z(t), t, \theta_f) dt$$

Related Work

Neural ODE, Ffjord – Efficient Determinant Calculation

- $\left|\frac{\partial z(t_1)}{\partial z(t_0)}\right|$ is main bottle neck of calculating likelihood.
- It usually costs $O(D^3)$ or $O(D^2)$, when *D* is the size of data dimension. $log^{p(z(t_1))} = log^{p(z(t_0))} - log^{|\frac{\partial z(t_1)}{\partial z(t_0)}|}$

Related Work

Neural ODE, Ffjord – Efficient Determinant Calculation

- $\left|\frac{\partial z(t_1)}{\partial z(t_0)}\right|$ is main bottle neck of calculating likelihood.
- It usually costs $O(D^3)$ or $O(D^2)$, when *D* is the size of data dimension. $log^{p(z(t_1))} = log^{p(z(t_0))} - log^{|\frac{\partial z(t_1)}{\partial z(t_0)}|}$
- By instantaneous change of variables formula, (Neural ODE)

$$\frac{\partial \log^{p(z(t))}}{\partial t} = -Tr\left(\frac{\partial f}{\partial z(t)}\right), \quad \frac{\partial z}{\partial t} = f(z(t), t, \theta_f)$$
$$\log^{p(z(t_1))} = \log^{p(z(t_0))} - \int_{t_0}^{t_1} Tr\left(\frac{\partial f}{\partial z(t)}\right) dt$$

Related Work

Neural ODE, Ffjord – Efficient Determinant Calculation

- $\left|\frac{\partial z(t_1)}{\partial z(t_0)}\right|$ is main bottle neck of calculating likelihood.
- It usually costs $O(D^3)$ or $O(D^2)$, when *D* is the size of data dimension. $log^{p(z(t_1))} = log^{p(z(t_0))} - log^{|\frac{\partial z(t_1)}{\partial z(t_0)}|}$
- By instantaneous change of variables formula, (Neural ODE)

$$\frac{\partial \log^{p(z(t))}}{\partial t} = -Tr\left(\frac{\partial f}{\partial z(t)}\right), \quad \frac{\partial z}{\partial t} = f(z(t), t, \theta_f)$$
$$\log^{p(z(t_1))} = \log^{p(z(t_0))} - \int_{t_0}^{t_1} Tr\left(\frac{\partial f}{\partial z(t)}\right) dt$$

- By Hutchinson estimator, $log^{p(z(t_1))}$ can be efficiently calculated. (Ffjord)
- The cost of calculating Hutchinson estimator is slightly larger than that of evaluating f, since calculating $\epsilon^T \frac{\partial f}{\partial z(t)}$ has the same cost as f, using the reverse-mode automatic differentiation.

$$\frac{\partial \log^{p(z(t))}}{\partial t} = -Tr\left(\frac{\partial f}{\partial z(t)}\right) = -E_{p(\epsilon)}\left[\epsilon^{T}\frac{\partial f}{\partial z(t)}\epsilon\right]$$

Proposed Model ITGAN(Invertible Tabular GAN)

- ITGAN synthesizes the data on hidden space, and Decoder recover the real data from that. (Green) There are 3 parts in ITGAN. (Red: AutoEncoder, Orange: GAN, Blue: Likelihood(Log-density))

Proposed Model ITGAN(Invertible Tabular GAN) - AutoEncoder

- AutoEncoder makes hidden space, and GAN operates on that.
- GAN by separating the labor.

Using AutoEncoder meets the invariant dimensionality requirement of NODEs and, relieves the burden of

AutoEncoder is learned by L_{AE} , where \hat{h}_{fake} is a reconstructed hidden vector by Encoder(Decoder(h_{fake})).

Proposed Model ITGAN(Invertible Tabular GAN) – GAN, Likelihood(Log-density)

- GAN generates hidden vector with Neural ODE. The integral time is $0 \sim 1$.
- GAN is the same with the original WGAN-GP model, except the invertible structure and the operation on hidden space made by autoencoder.
- GAN is trained with L_{GAN} and $R_{density}$, where L_{GAN} is the WGAN-GP loss, and $R_{density}$ is negative log-density regularization calculated using Hutchison Estimator.

Proposed Model Training Algorithm

Algorithm 1: How to train IT-GAN **Input:** Training data D_{train} , Validating data D_{val} , Maximum iteration number max_iter, The training periods $period_D, period_G, period_L$ 1 Initialize $\theta_e, \theta_r, \theta_g, \theta_d$, and $k \leftarrow 0$; 2 while $k < max_{iter} do$ $k \leftarrow k+1;$ 3 Train θ_e and θ_r with L_{AE} and L_{GAN} ; 4 if $k \mod period_D = 0$ then 5 Train θ_d with L_{GAN} ; 6 end 7 if k mod $period_G = 0$ then 8 Train θ_g with L_{GAN} ; 9 end 10if k mod $period_L = 0$ then 11 Train θ_q with $R_{density}$; 12end 13 Validate and update the best parameters, 14 $\boldsymbol{\theta}_{e}^{*}, \boldsymbol{\theta}_{r}^{*}, \boldsymbol{\theta}_{g}^{*}, \text{ and } \boldsymbol{\theta}_{d}^{*}, \text{ with } D_{val};$ 15 end 16 return θ_e^* , θ_r^* , θ_g^* , and θ_d^* ;

- AutoEncoder

 - discriminator.

- Train with L_{AE} every iteration

- Training the Encoder with L_{GAN} helps the discriminator better distinguish real and fake hidden vectors by learning a hidden vector in favor of the

Proposed Model Training Algorithm

Algorithm 1: How to train IT-GAN

Input: Training data D_{train} , Validating data D_{val} , Maximum iteration number max_iter, The training periods $period_D, period_G, period_L$ 1 Initialize $\theta_e, \theta_r, \theta_g, \theta_d$, and $k \leftarrow 0$; 2 while $k < max_{iter} do$ $k \leftarrow k+1;$ 3 Train θ_e and θ_r with L_{AE} and L_{GAN} ; 4 if k mod $period_D = 0$ then 5 Train θ_d with L_{GAN} ; 6 end 7 if k mod $period_G = 0$ then 8 Train θ_g with L_{GAN} ; 9 end 10if k mod $period_L = 0$ then 11 Train θ_q with $R_{density}$; 12end 13 Validate and update the best parameters, 14 $\boldsymbol{\theta}_{e}^{*}, \boldsymbol{\theta}_{r}^{*}, \boldsymbol{\theta}_{g}^{*}, \text{ and } \boldsymbol{\theta}_{d}^{*}, \text{ with } D_{val};$ 15 end

16 return θ_e^* , θ_r^* , θ_g^* , and θ_d^* ;

- AutoEncoder

 - discriminator.

- Train with L_{AE} every iteration

- Training the Encoder with L_{GAN} helps the discriminator better distinguish real and fake hidden vectors by learning a hidden vector in favor of the

GAN, Likelihood(Log-density)

- generator, discriminator are trained with L_{GAN} every each period, where AutoEncoder is trained every iterations. Because Generator and Discriminator rely on the hidden vector by the AutoEncoder. - log-density regularization also has a period, since frequent log-density regularization negatively affects the entire training progress.

Experiments Evaluation Score(Binary Classification)

Table 1: Classification in Adult

Method	F1	ROCAUC	Dist.
Real	0.66 ± 0.00	0.88 ± 0.00	0.00 ± 0.00
PrivBN	0.43±0.02	0.84±0.01	0.35±0.05
TVAE	0.62 ± 0.01	0.84 ± 0.01	0.16±0.04
TGAN	0.63±0.01	0.85±0.01	0.22 ± 0.02
TableGAN	0.46±0.03	0.81±0.01	0.42±0.03
IT-GAN(Q)	0.64 ± 0.01	0.86±0.00	0.33±0.03
IT-GAN(L)	0.64 ± 0.01	0.85 ± 0.01	0.41±0.09
IT-GAN	0.64±0.01	0.86±0.01	0.30 ± 0.01

Test score of Regression/Classification Machine Learning Model trained with synthesized samples of each generative model

Table 2: Classification in Census

Method	F1	ROCAUC	Dist.
Real	0.47 ± 0.01	0.90 ± 0.00	0.00 ± 0.00
PrivBN	0.23±0.03	0.81±0.03	0.57±0.05
TVAE	0.44 ± 0.01	0.86 ± 0.01	0.14 ± 0.01
TGAN	0.38±0.03	0.86 ± 0.02	0.14 ± 0.02
TableGAN	0.31±0.06	0.81±0.03	0.30±0.06
IT-GAN(Q)	0.45±0.01	0.89±0.00	0.32±0.05
IT-GAN(L)	0.46 ± 0.01	0.88 ± 0.01	0.49 ± 0.10
IT-GAN	0.45±0.01	0.88 ± 0.00	0.32±0.05

Experiments Evaluation Score(Multi-Class Classification)

Table 3: Classification in Credit

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.48 ± 0.01	0.61±0.00	0.67 ± 0.00	0.00 ± 0.00
Ind	0.27±0.01	0.44±0.01	0.51±0.01	0.75±0.04
PrivBN	0.32±0.02	0.51±0.01	0.60 ± 0.00	0.99±0.11
TVAE	0.39±0.00	0.57 ± 0.00	0.58 ± 0.00	0.27±0.03
TGAN	0.40 ± 0.00	0.55±0.01	0.59 ± 0.00	0.44±0.03
MedGAN	0.37±0.02	0.51±0.03	0.56 ± 0.01	26.37±2.87
IT-GAN(Q)	0.41 ± 0.01	0.54±0.01	0.60 ± 0.00	0.52±0.06
IT-GAN(L)	0.40 ± 0.01	0.55±0.01	0.60±0.01	0.69±0.04
IT-GAN	0.40±0.00	0.54±0.01	0.59±0.01	0.59 ± 0.04

Test score of Regression/Classification Machine Learning Model trained with synthesized samples of each generative model

Table 4: Classification in Cabs

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.65±0.00	0.68 ± 0.00	0.78 ± 0.00	0.00 ± 0.00
PrivBN	0.64±0.00	0.67±0.00	0.77±0.00	0.52±0.02
TVAE	0.60 ± 0.02	0.66 ± 0.01	0.74 ± 0.01	0.33±0.01
TGAN	0.64 ± 0.00	0.67±0.00	0.76 ± 0.00	0.49 ± 0.02
VeeGAN	0.54±0.06	0.60 ± 0.05	0.71±0.02	1.46 ± 0.12
IT-GAN(Q)	0.66±0.00	0.69±0.00	0.79±0.01	0.56±0.06
IT-GAN(L)	0.66±0.01	0.68±0.01	0.79±0.00	0.64±0.05
IT-GAN	0.64 ± 0.01	0.67±0.01	0.77±0.00	0.53±0.04

Experiments Evaluation Score(Regression)

Table 5: Regression in King

Method	R^2	Ex. Var.	MSE	MAE	Dist.	explained	variane)			
Real	0.50±0.11	0.61 ± 0.02	0.14 ± 0.03	0.30 ± 0.03	0.00 ± 0.00	Method	R^2	Ex.Var	MSE	MAE	Dist.
TGAN	0.44 ± 0.01 0.43 ± 0.01	0.52±0.04 0.60±0.00	0.16±0.00	0.32 ± 0.01 0.32 ± 0.00	0.29 ± 0.02 0.55 ± 0.02	Real	0.15 ± 0.01	0.15 ± 0.00	0.69 ± 0.00	0.63 ± 0.01	0.00 ± 0.00
TableGAN	0.41±0.02	0.46±0.03	0.17±0.01	0.33 ± 0.01	0.61±0.03	TVAE	-0.09±0.03	0.03±0.04	0.88±0.03	0.67±0.01	1.84 ± 0.04
VeeGAN	0.25 ± 0.15	0.32 ± 0.14	0.21±0.04	0.37±0.03	4.61±2.22	TGAN	0.06±0.02	0.07±0.01	0.76 ± 0.01	0.66±0.02	1.97±0.05
IT-GAN(D)	0.59 ± 0.00	0.60 ± 0.00	0.12 ± 0.00	0.28 ± 0.00	0.60 ± 0.02	IT-GAN(Q)	0.09 ± 0.01	0.09 ± 0.01	0.74 ± 0.01	0.65 ± 0.01	2.31 ± 0.02
IT_GAN(L)	0.53 ± 0.01	0.56 ± 0.01	0.13 ± 0.00	0.29 ± 0.00	1.09 ± 0.19	IT-GAN(L)	0.03 ± 0.03	0.06 ± 0.02	0.78 ± 0.03	0.65±0.01	2.45 ± 0.06
IT-GAN	0.59 ± 0.01	0.60±0.01	0.12±0.00	0.27±0.00	0.64 ± 0.06	IT-GAN	0.09±0.02	0.10 ± 0.01	0.74 ± 0.01	0.64±0.00	2.37±0.03

Test score of Regression/Classification Machine Learning Model trained with synthesized samples of each generative model

Table 6: Regression in News (Ex. Var. means explained variance.)

Experiments **Evaluation Score**

Table 1: Classification in Adult

Method	F1	ROCAUC	Dist.
Real	0.66 ± 0.00	0.88 ± 0.00	0.00 ± 0.00
PrivBN	0.43±0.02	0.84 ± 0.01	0.35±0.05
TVAE	0.62 ± 0.01	0.84 ± 0.01	0.16 ± 0.04
TGAN	0.63 ± 0.01	0.85 ± 0.01	0.22 ± 0.02
TableGAN	0.46±0.03	0.81 ± 0.01	0.42±0.03
IT-GAN(Q)	0.64 ± 0.01	0.86 ± 0.00	0.33±0.03
IT-GAN(L)	0.64 ± 0.01	0.85 ± 0.01	0.41±0.09
IT-GAN	0.64±0.01	0.86±0.01	0.30 ± 0.01

Table 3: Classification in Credit

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.48 ± 0.01	0.61 ± 0.00	0.67 ± 0.00	0.00 ± 0.00
Ind	0.27±0.01	0.44±0.01	0.51±0.01	0.75 ± 0.04
PrivBN	0.32 ± 0.02	0.51±0.01	0.60 ± 0.00	0.99 ± 0.11
TVAE	0.39 ± 0.00	0.57 ± 0.00	0.58 ± 0.00	0.27 ± 0.03
TGAN	0.40 ± 0.00	0.55±0.01	0.59 ± 0.00	0.44 ± 0.03
MedGAN	0.37±0.02	0.51±0.03	0.56 ± 0.01	26.37±2.87
IT-GAN(Q)	0.41 ± 0.01	0.54±0.01	0.60 ± 0.00	0.52 ± 0.06
IT-GAN(L)	0.40 ± 0.01	0.55±0.01	0.60 ± 0.01	0.69 ± 0.04
IT-GAN	0.40±0.00	0.54±0.01	0.59±0.01	0.59 ± 0.04

Table 5: Regression in King

Method	R^2	Ex. Var.	MSE	MAE	Dist.
Real	0.50 ± 0.11	0.61±0.02	0.14±0.03	0.30±0.03	0.00 ± 0.00
TVAE	0.44 ± 0.01	0.52±0.04	0.16 ± 0.00	0.32±0.01	0.29±0.02
TGAN	0.43±0.01	0.60 ± 0.00	0.16 ± 0.00	0.32±0.00	0.55±0.02
TableGAN	0.41±0.02	0.46±0.03	0.17 ± 0.01	0.33 ± 0.01	0.61±0.03
VeeGAN	0.25±0.15	0.32±0.14	0.21±0.04	0.37±0.03	4.61±2.22
IT-GAN(Q)	0.59±0.00	0.60 ± 0.00	0.12 ± 0.00	0.28±0.00	0.60±0.02
IT-GAN(L)	0.53±0.01	0.56 ± 0.01	0.13±0.00	0.29±0.00	1.09±0.19
IT-GAN	0.59±0.01	0.60±0.01	0.12 ± 0.00	0.27 ± 0.00	0.64±0.06

Table 2: Classification in Census

Method	F1	ROCAUC	Dist.
Real	0.47 ± 0.01	0.90 ± 0.00	0.00 ± 0.00
PrivBN	0.23±0.03	0.81±0.03	0.57±0.05
TVAE	0.44 ± 0.01	0.86 ± 0.01	0.14 ± 0.01
TGAN	0.38 ± 0.03	0.86 ± 0.02	0.14 ± 0.02
TableGAN	0.31±0.06	0.81 ± 0.03	0.30 ± 0.06
IT-GAN(Q)	0.45±0.01	0.89 ± 0.00	0.32±0.05
IT-GAN(L)	0.46 ± 0.01	0.88 ± 0.01	0.49 ± 0.10
IT-GAN	0.45±0.01	0.88 ± 0.00	0.32±0.05

 \bullet

Table 4: Classification in Cabs

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.65±0.00	0.68 ± 0.00	0.78 ± 0.00	0.00 ± 0.00
PrivBN	0.64±0.00	0.67±0.00	0.77 ± 0.00	0.52 ± 0.02
TVAE	0.60 ± 0.02	0.66 ± 0.01	0.74 ± 0.01	0.33 ± 0.01
TGAN	0.64±0.00	0.67 ± 0.00	0.76 ± 0.00	0.49 ± 0.02
VeeGAN	0.54±0.06	0.60 ± 0.05	0.71 ± 0.02	1.46 ± 0.12
IT-GAN(Q)	0.66±0.00	0.69±0.00	0.79 ± 0.01	0.56±0.06
IT-GAN(L)	0.66±0.01	0.68 ± 0.01	0.79 ± 0.00	0.64 ± 0.05
IT-GAN	0.64 ± 0.01	0.67 ± 0.01	0.77±0.00	0.53±0.04

Table 6: Regression in News (Ex. Var. means explained variance.)

Method	R^2	Ex.Var	MSE	MAE	Dist.
Real	0.15 ± 0.01	0.15±0.00	0.69 ± 0.00	0.63 ± 0.01	0.00 ± 0.00
TVAE	-0.09±0.03	0.03±0.04	0.88±0.03	0.67±0.01	1.84 ± 0.04
TGAN	0.06 ± 0.02	0.07 ± 0.01	0.76±0.01	0.66±0.02	1.97±0.05
IT-GAN(Q)	0.09 ± 0.01	0.09 ± 0.01	0.74 ± 0.01	0.65 ± 0.01	2.31±0.02
IT-GAN(L)	0.03±0.03	0.06±0.02	0.78±0.03	0.65±0.01	2.45±0.06
IT-GAN	0.09±0.02	0.10 ± 0.01	0.74 ± 0.01	0.64 ± 0.00	2.37±0.03

ITGAN(Q) is a proposed model decreasing the negative logdensity, where ITGAN(L) is that sacrificing the negative logdensity. ITGAN is without log-density regularizer. Dist.(real-fake distance) is the average of the distance from each fake record to its closest real record

Experiments **Evaluation Score**

Table 1: Classification in Adult

Method	F1	ROCAUC	Dist.
Real	0.66 ± 0.00	0.88 ± 0.00	0.00 ± 0.00
PrivBN	0.43±0.02	0.84 ± 0.01	0.35±0.05
TVAE	0.62 ± 0.01	0.84 ± 0.01	0.16 ± 0.04
TGAN	0.63 ± 0.01	0.85 ± 0.01	0.22 ± 0.02
TableGAN	0.46±0.03	0.81 ± 0.01	0.42±0.03
IT-GAN(Q)	0.64 ± 0.01	0.86 ± 0.00	0.33±0.03
IT-GAN(L)	0.64 ± 0.01	0.85 ± 0.01	0.41±0.09
IT-GAN	0.64±0.01	0.86±0.01	0.30 ± 0.01

Table 3: Classification in Credit

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.48 ± 0.01	0.61 ± 0.00	0.67 ± 0.00	0.00 ± 0.00
Ind	0.27±0.01	0.44±0.01	0.51±0.01	0.75 ± 0.04
PrivBN	0.32 ± 0.02	0.51±0.01	0.60 ± 0.00	0.99 ± 0.11
TVAE	0.39 ± 0.00	0.57 ± 0.00	0.58 ± 0.00	0.27 ± 0.03
TGAN	0.40 ± 0.00	0.55±0.01	0.59 ± 0.00	0.44 ± 0.03
MedGAN	0.37±0.02	0.51±0.03	0.56 ± 0.01	26.37±2.87
IT-GAN(Q)	0.41 ± 0.01	0.54±0.01	0.60 ± 0.00	0.52 ± 0.06
IT-GAN(L)	0.40 ± 0.01	0.55±0.01	0.60 ± 0.01	0.69 ± 0.04
IT-GAN	0.40±0.00	0.54±0.01	0.59±0.01	0.59 ± 0.04

Table 5: Regression in King

-						
	Method	R^2	Ex. Var.	MSE	MAE	Dist.
	Real	0.50 ± 0.11	0.61±0.02	0.14±0.03	0.30±0.03	0.00 ± 0.00
	TVAE	0.44 ± 0.01	0.52±0.04	0.16 ± 0.00	0.32±0.01	0.29±0.02
	TGAN	0.43 ± 0.01	0.60 ± 0.00	0.16 ± 0.00	0.32±0.00	0.55±0.02
	TableGAN	0.41±0.02	0.46±0.03	0.17 ± 0.01	0.33 ± 0.01	0.61±0.03
	VeeGAN	0.25±0.15	0.32 ± 0.14	0.21±0.04	0.37±0.03	4.61±2.22
	IT-GAN(Q)	0.59 ± 0.00	0.60 ± 0.00	0.12 ± 0.00	0.28±0.00	0.60±0.02
	IT-GAN(L)	0.53±0.01	0.56 ± 0.01	0.13±0.00	0.29±0.00	1.09±0.19
	IT-GAN	0.59±0.01	0.60±0.01	0.12 ± 0.00	0.27 ± 0.00	0.64±0.06

Table 2: Classification in Census

Method	F1	ROCAUC	Dist.
Real	0.47 ± 0.01	0.90 ± 0.00	0.00 ± 0.00
PrivBN	0.23±0.03	0.81±0.03	0.57±0.05
TVAE	0.44 ± 0.01	0.86 ± 0.01	0.14 ± 0.01
TGAN	0.38 ± 0.03	0.86 ± 0.02	0.14 ± 0.02
TableGAN	0.31±0.06	0.81±0.03	0.30 ± 0.06
IT-GAN(Q)	0.45±0.01	0.89 ± 0.00	0.32±0.05
IT-GAN(L)	0.46 ± 0.01	0.88 ± 0.01	0.49±0.10
IT-GAN	0.45±0.01	0.88 ± 0.00	0.32±0.05

Table 4: Classification in Cabs

Method	Macro F1 Micro F1 ROCAUC	Dist.
Real	0.65±0.00 0.68±0.00 0.78±0.00 0	.00±0.00
PrivBN	0.64±0.00 0.67±0.00 0.77±0.00 0	.52±0.02
TVAE	0.60±0.02 0.66±0.01 0.74±0.01 0	.33±0.01
TGAN	0.64±0.00 0.67±0.00 0.76±0.00 0	.49±0.02
VeeGAN	0.54±0.06 0.60±0.05 0.71±0.02 1	.46±0.12
IT-GAN(Q)	0.66±0.00 0.69±0.00 0.79±0.01 0	.56±0.06
IT-GAN(L)	0.66±0.01 0.68±0.01 0.79±0.00 0	.64±0.05
IT-GAN	0.64±0.01 0.67±0.01 0.77±0.00 0	.53±0.04

Table 6: Regression in News (Ex. Var. means explained variance.)

Method	R^2	Ex.Var	MSE	MAE	Dist.
Real	0.15 ± 0.01	0.15±0.00	0.69 ± 0.00	0.63 ± 0.01	0.00 ± 0.00
TVAE	-0.09±0.03	0.03±0.04	0.88±0.03	0.67±0.01	1.84 ± 0.04
TGAN	0.06 ± 0.02	0.07 ± 0.01	0.76±0.01	0.66±0.02	1.97±0.05
IT-GAN(Q)	0.09 ± 0.01	0.09 ± 0.01	0.74 ± 0.01	0.65 ± 0.01	2.31±0.02
IT-GAN(L)	0.03±0.03	0.06±0.02	0.78±0.03	0.65±0.01	2.45±0.06
IT-GAN	0.09±0.02	0.10 ± 0.01	0.74 ± 0.01	0.64 ± 0.00	2.37±0.03

ITGAN(Q) is a proposed model decreasing the negative logdensity, where ITGAN(L) is that sacrificing the negative logdensity. ITGAN is without log-density regularizer. Dist.(real-fake distance) is the average of the distance from each fake record to its closest real record

All kinds of ITGAN achieve the best score in almost cases. Among ITGAN, ITGAN(Q) is the best.

Experiments **Evaluation Score**

Table 1: Classification in Adult

Method	F1	ROCAUC	Dist.
Real	0.66 ± 0.00	0.88 ± 0.00	0.00 ± 0.00
PrivBN	0.43±0.02	0.84 ± 0.01	0.35±0.05
TVAE	0.62 ± 0.01	0.84 ± 0.01	0.16±0.04
TGAN	0.63 ± 0.01	0.85 ± 0.01	0.22 ± 0.02
TableGAN	0.46±0.03	0.81 ± 0.01	0.42±0.03
IT-GAN(Q)	0.64 ± 0.01	0.86 ± 0.00	0.33±0.03
IT-GAN(L)	0.64 ± 0.01	0.85 ± 0.01	0.41±0.09
IT-GAN	0.64±0.01	0.86±0.01	0.30±0.01

Table 3: Classification in Credit

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.48 ± 0.01	0.61 ± 0.00	0.67 ± 0.00	0.00 ± 0.00
Ind	0.27±0.01	0.44±0.01	0.51±0.01	0.75 ± 0.04
PrivBN	0.32 ± 0.02	0.51±0.01	0.60 ± 0.00	0.99 ± 0.11
TVAE	0.39 ± 0.00	0.57 ± 0.00	0.58 ± 0.00	0.27 ± 0.03
TGAN	0.40 ± 0.00	0.55±0.01	0.59 ± 0.00	0.44 ± 0.03
MedGAN	0.37±0.02	0.51±0.03	0.56 ± 0.01	26.37±2.87
IT-GAN(Q)	0.41 ± 0.01	0.54±0.01	0.60 ± 0.00	0.52 ± 0.06
IT-GAN(L)	0.40 ± 0.01	0.55±0.01	0.60 ± 0.01	0.69 ± 0.04
IT-GAN	0.40±0.00	0.54±0.01	0.59±0.01	0.59 ± 0.04

Table 5: Regression in King

Method	R^2	Ex. Var.	MSE	MAE	Dist.
Real	0.50 ± 0.11	0.61±0.02	0.14±0.03	0.30±0.03	0.00 ± 0.00
TVAE	0.44 ± 0.01	0.52 ± 0.04	0.16 ± 0.00	0.32 ± 0.01	0.29±0.02
TGAN	0.43±0.01	0.60 ± 0.00	0.16 ± 0.00	0.32±0.00	0.55±0.02
TableGAN	0.41±0.02	0.46±0.03	0.17 ± 0.01	0.33 ± 0.01	0.61±0.03
VeeGAN	0.25±0.15	0.32 ± 0.14	0.21±0.04	0.37±0.03	4.61±2.22
IT-GAN(Q)	0.59±0.00	0.60 ± 0.00	0.12 ± 0.00	0.28±0.00	0.60±0.02
IT-GAN(L)	0.53±0.01	0.56 ± 0.01	0.13±0.00	0.29±0.00	1.09±0.19
IT-GAN	0.59±0.01	0.60±0.01	0.12 ± 0.00	0.27 ± 0.00	0.64±0.06

Table 2: Classification in Census

Method	F1	ROCAUC	Dist.
Real	0.47 ± 0.01	0.90 ± 0.00	0.00 ± 0.00
PrivBN	0.23±0.03	0.81±0.03	0.57±0.05
TVAE	0.44 ± 0.01	0.86 ± 0.01	0.14 ± 0.01
TGAN	0.38 ± 0.03	0.86 ± 0.02	0.14±0.02
TableGAN	0.31±0.06	0.81 ± 0.03	0.30 ± 0.06
IT-GAN(Q)	0.45±0.01	0.89 ± 0.00	0.32±0.05
IT-GAN(L)	0.46 ± 0.01	0.88 ± 0.01	0.49±0.10
IT-GAN	0.45±0.01	0.88 ± 0.00	0.32±0.05

 \bullet

Table 4: Classification in Cabs

Method	Macro F1	Micro F1	ROCAUC	Dist.
Real	0.65±0.00	0.68 ± 0.00	0.78 ± 0.00	0.00 ± 0.00
PrivBN	0.64 ± 0.00	0.67±0.00	0.77 ± 0.00	0.52±0.02
TVAE	0.60 ± 0.02	0.66 ± 0.01	0.74 ± 0.01	0.33 ± 0.01
TGAN	0.64 ± 0.00	0.67 ± 0.00	0.76 ± 0.00	0.49 ± 0.02
VeeGAN	0.54±0.06	0.60 ± 0.05	0.71 ± 0.02	1.46 ± 0.12
IT-GAN(Q)	0.66 ± 0.00	0.69±0.00	0.79 ± 0.01	0.56±0.06
IT-GAN(L)	0.66±0.01	0.68 ± 0.01	0.79 ± 0.00	0.64±0.05
IT-GAN	0.64 ± 0.01	0.67 ± 0.01	0.77 ± 0.00	0.53±0.04

Table 6: Regression in News (Ex. Var. means explained variance.)

Method	R^2	Ex.Var	MSE	MAE	Dist.
Real	0.15 ± 0.01	0.15 ± 0.00	0.69 ± 0.00	0.63 ± 0.01	0.00 ± 0.00
TVAE	-0.09±0.03	0.03±0.04	0.88±0.03	0.67±0.01	1.84 ± 0.04
TGAN	0.06 ± 0.02	0.07 ± 0.01	0.76±0.01	0.66±0.02	1.97±0.05
IT-GAN(Q)	0.09 ± 0.01	0.09 ± 0.01	0.74 ± 0.01	0.65±0.01	2.31±0.02
IT-GAN(L)	0.03 ± 0.03	0.06±0.02	0.78±0.03	0.65 ± 0.01	2.45±0.06
IT-GAN	0.09±0.02	0.10 ± 0.01	0.74 ± 0.01	0.64±0.00	2.37±0.03

ITGAN(Q) is a proposed model decreasing the negative logdensity, where ITGAN(L) is that sacrificing the negative logdensity. ITGAN is without log-density regularizer. Dist.(real-fake distance) is the average of the distance from each fake record to its closest real record

All kinds of ITGAN achieve the best score in almost cases. Among ITGAN, ITGAN(Q) is the best.

Despite sacrificing the negative log-density, ITGAN(L) achieves the reasonable scores. Dist. of ITGAN(L) is the biggest.

Experiments **Privacy Attack**

Model	Adult	Census	Credit	Cabs	King	News
IT-GAN(Q)	0.612±0.008	0.833±0.011 0 741+0 027	0.710±0.012 0.656±0.027	0.659±0.016 0.630±0.011	0.761±0.025 0 703+0 032	0.791±0.003 0 783+0 010
IT-GAN	0.618 ± 0.003	0.816 ± 0.019	0.688 ± 0.058	0.654 ± 0.033	0.742 ± 0.002	0.788 ± 0.007

- \bullet has reasonable machine learning evaluation scores.

• Table shows privacy attack success scores. High score means being more vulnerable to privacy attack. ITGAN(L) achieves the lowest privacy attack sucess scores, however before results prove that ITGAN(L)

Experiments Ablation Study: ITGAN vs ITGAN(Q,L)

(a) IT-GAN

(b) IT-GAN(Q)

- It shows the effect of log-density
- ITGAN(Q) generates the synthesized data more similar to oringal data than ITGAN.
- However, ITGAN(L)'s samples are very different with original data.
- These show that log-density regularizer works as intended.

The above figure(figure1) shows real-fake distance and the below figure (figure2) shows t-SNE visualization.

Experiments **Sensitivity Analyses**

Table 9: Sensitivity in News

γ i	R^2	Ex.Var	MSE	MAE	Dist.	-		
0.0105.0	05	0.07	0.77	0.66	2 53	_	γ	FBB ROCA
0.0100 0	0.06	0.07	0.76	0.65	2.49	_	-0.012	0.762
0.0000 0	0.07	0.10	0.75	$\frac{0.62}{0.64}$	2.41		-0.011	0.752
0.0100 0	.10	0.11	0.73	0.64	2.44		0.000	0.784
0.0500 0	.10	0.10	0.73	0.65	2.34		0.050	0.787
							0.100	0.792

- γ is the coefficient of negative log-density regularizer
- When $\gamma = 0.01$, the evaluation scores (Machine Learning score) are the best. •
- As γ decreases, real-fake distance (Dist.) increases.
- Similarly the lower γ achieves the lower attack success score.

Table 10: Sensitivity of full b	lack
box attack w.r.t. γ in News	

Conclusion

ITGAN

- Successfully combine GAN and log-density regularization

ITGAN can adjust trade-off between synthesis quality and the real-fake distance.

In some Multi-class or/and imbalanced datasets, there is a room for improving.

