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Introduction: Multi-Agent Competition

Motivation

Many recent ML and AT advances involve competitive interac-

tions between 2-agents
o generative adversarial networks (GANs)
« actor-critic systems
« competitive game-playing: chess, Go

Modelled as strictly-competitive, 2-agent, zero-sum games or

variants thereof

» multiple equilibria but unique value
o equilibrium strategies are exchangeable

o optimization-driven algorithms perform well

What happens beyond these settings?
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Introduction: Multi-Agent Competition

Motivation: Open Questions

In multi-agent competition, many properties of the 2-agent set-
tings collapse

» multiple but payoff-diverse equilibria

« exploration-exploitation for equilibrium selection

Multi-agent vs 2-agent competition
« not only significantly harder

« but also qualitatively different

Research goals: in networks of strictly competitive games
« convergence of exploration-exploitation dynamics

o equilibrium selection with payoff-diverse equilibria
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Game-Theoretic Model




Game-Theoretic Model

Weighted Zero-sum Polymatrix Games

A weighted zero-sum polymatrix game (WZPG), T’ = ((V, E), (S, W) ey - (Ak) [k,l]eE)

u(x) :=x Z Ayx; = Xk re (x_g) ? /’\
[k lleE

Aig

Zwkuk( ) =0, forallx € A. | : | *
kev _<:)

Nash Equilibrium (NE): a strategy profile, p = (px)xev € A, with one strategy for each
agent k € V, pr = (pri)ies, € Mg such that

uk(p) > uk(xk,p,k), forall x; € A, ke V.
Properties: WZPGs capture complexities of multi-agent competition

« multiple NE with non-unique payoff values and non-exchangeable NE strategies
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Joint Learning Model

Q-Learning Dynamics (QLD)

Q-value updates and Boltzmann selection probabilities for all agents k € V

% = (k) — x{ r (x_k) = T [In () — %} In (x)], M

exploitation exploration

Exploration rates Tg:

o Ty = 0: select action with highest Q-value (exploitation)

o Ty — oco: uniformly randomize over actions (exploration)

Interpretation of Ty’s:

o physics: temperature of the system
« behavioral: agents bounded rationality or discounting of past payoffs

« algorithmic: regularization to avoid boundary or local optima

4/11



Solution Concept: QRE




Solution Concept: QRE

Quantal Response Equilibria

Quantal Response Equilibria (QRE), p = (px)kev, of T

« standard solution concept in games with bounded rationality

« logit (softmax) form that depends on exploration rates

exp (rki/ Ti)

= "R forallic€ S, ke V. 2
ZjGSk exp (rk]/Tk)

Pki

o may be very different from NE, but not when Ty, are close to 0.

Theorem (Interior Fixed Points of QLD)

The interior fixed points, p = (px)kev of the Q-learning dynamics in an arbitrary game T
with positive exploration rates, Ty, > 0, always exist and coincide with the ORE of T.

A strategy profile p = (pg)kev is an interior fixed point of QLD if the RHS in (1) is 0.
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Main Result

Convergence of Q-Learning to QRE in Multi-Agent Competition

Main Theorem (Informal)

Let I' be a WZPG, with positive exploration rates, T > 0, for all k € V. There exists a
unique ORE, p, such that any trajectory, x(t), of the O-learning dynamics starting from an
arbitrary interior point, converges to p exponentially fast.

Takeaways

o despite the diversity of NE, we have uniqueness of QRE

« as T — 0, QRE approaches a NE of I': way out of tight spot of equilibrium selection
Remarks

o tight assumptions: if T = 0 for some k € V, then QLD may converge to the
boundary even for interior starting points.

o prior work: QLD provably converges in multi-agent coordination.
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Experiments

Visualization of the QRE Manifold

Asymmetric Matching Pennies (AMPs): 2-agent, weighted zero-sum game with

0 2 -4 —4

sothat A+0.5-B" =0anda unique interior NE at (p,q) = ((1/3,2/3),(2/3,1/3)).

ETE vs CLR-1 « ETE: explore-then-exploit
» CLR-1: cyclical learning rate (1-cycle)

Exploration rates: T,, T,

Trerations

+ QRE manifold and exploration path

00 T,
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Experiments

Excursion: QLD in Multi-Agent Coordination

Multi-agent learning in coordination settings (prior work)!

o QLD provably converges in multi-agent weighted potential games
« multiple QRE, but bifurcation phenomena explain equilibrium selection
« equilibrium selection after exploration depends on a game’s geometry

Stag Hunt Battle of the Sexes

Single branch of the saddle-node bifurcation curve Two branches of the saddle-node bifurcation curve

1S. Leonardos, G. Piliouras, Exploration-Exploitation in Multi-Agent Learning: Catastrophe Theory Meets Game
Theory, AAAI-21, Best paper award.
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Experiments

Convergence to QRE

Match-Mismatch Game (MMG): line-network WZPG with

Ay Ay
~_ ~_
) A_

(H) (HT A_ (HT) (T)
1 -1
.A+_<1 1>,A__—A+andA1—A2—(1,—1)

« first and last are dummy agents with fixed actions
» goal: mismatch the previous and match the next agent

o infinite many NE: (T,H/T,T,H/T,...)
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Convergence to QRE

Experiments

Match-Mismatch Game (MMG): line-network WZPG with
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Convergence result is tight
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Conclusions

Takeaways: Q-Learning and Quantal Response Equilibria

Multi-agent competition

o despite the diversity of NE, we have uniqueness of QRE

o QLD converges to QRE and solves the equilibrium selection problem

Multi-agent coordination (prior work)

» QLD converges to QRE in multi-agent weighted potential games

« even with multiple QRE, bifurcation phenomena explain equilibrium selection

Next steps

o Can we go beyond that: mixed games with both cooperation and competition?

o Effects of exploration on individual/social welfare after equilibrium selection?
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