Intermediate Layers Matter in Momentum Contrastive Self-Supervised Learning

Aakash Kaku

Sahana Upadhya

Narges Razavian

Self-supervised learning can be useful to learn from unlabeled medical data

- SSL methods helps to learn useful representations from large unlabeled data.
- Recent SOTA methods use contrastive based loss function:
 - MoCo [He et al., 2020]
 - BYOL [Grill et al., 2020]
 - Barlow Twins [Zbontar et al.,2021]
 - Dino [Caron et al., 2021]

- In medical domain, with advent of technology, large amounts of data are collected.
- Labeled data are limited as labeling is expensive and time consuming.
- Ideal case for using SSL methods.

MoCo has been widely used in the medical domain

[Ciga et al., 2020, Dehaene et al., 2020] [Sowrirajan et al., 2021]

[Azizi et al., 2021]

- Medical images are typically large (e.g. 1024 x 1024). MoCo allows to train to with small batches
- Used for histopathology classification task, chest x-ray interpretation, dermatology classification

Review of standard MoCo

Proposed MoCo: Enforcing similarity between intermediate features

Evaluation of models - Linear probing

- Linear classifier probing is the most standard way to evaluate SSL methodologies
 - A linear classifier is trained on the features generated by the SSL method. Rest of the network is frozen.
 - The test accuracy of the linear classifier is used as a proxy for the performance of SSL methodology.

Limitations:

- For most of the medical imaging applications, model is typically fully fine tuned. The network is not frozen.
- It is shown that for such applications, unlike natural images, linear probing yield models that have very low performance and hence become meaningless as a proxy for evaluating SSL methods.

Beyond linear probing - Feature reuse

- Taking inspiration from transfer learning, we propose feature reuse as a metric to evaluate SSL methods that are fully fine-tuned [Neyshabur et al., 2021].
- Feature reuse is measured by measuring similarity of features before and after fully fine tuning the model.
- Intuitively, if two ssl methods achieve similar performance on the downstream task after fully fine-tuning the model, the model with higher feature similarity has learned useful features during the SSL phase.
- Similarity is measured using Centered kernel alignment [Kornblith et al., 2019]
 - Invariant to orthogonal transformations.
 - Invariant to invertible linear transformation
 - Invariant to isotronic scaling.

Beyond linear probing - Layer-wise probing

- Probing the intermediate layers helps to understand how informative the intermediate features are for the downstream task.
- We expect the proposed approach to learn more informative intermediate features as compared to the standard MoCo

Beyond linear probing - KS distance

- KS distance is the greatest separation between the two cumulative distribution functions (CDFs)
- We compare the distribution of output softmax prob. of a SSL model fine-tuned on fraction of labeled data (like 1% or 6%) and a SSL model fine-tuned on the entire labeled data.
- Lower KS distance signifies both the models are similar in performance (classification and calibration)

Datasets

NIH Chest X Ray

= 112,120; 14 classes Multi-class classification; Metric = mac - AUC

Diabetic Retinopathy

= 88,702; Binary classification; Metric = mac - AUC

Breast Cancer Histopathology

= 277,524; Binary classification; Metric = F1-measure

- We divide the data into training (70%), validation (20%) and testing (10%) set
- For training during SSL phase, we use the entire training set.
- We fine tune the model using different fraction of labeled training data i.e. 1%, 6% and 100%

Results: Linear probing results

Dataset / Method	MoCo	MoCo + MSE	MoCo + Barlow Twins	Supervised
NIH Chest X-ray	74.4	74.8	73.5	79.8
(AUC (95% CI))	(73.9-75.0)	(74.2-75.4)	(72.9-74.0)	(79.2-80.3)
Diabetic Retinopathy	74.6	84.8	79.7	94.1
(AUC (95% CI))	(74.5-74.7)	(84.6-85.0)	(79.6-79.7)	(94.1-94.2)
Breast Cancer Histopathology	80.7	82.5	82.3	82.7
(F1-score (95% CI))	(80.4-81.1)	(82.2 - 82.9)	(82.0-82.7)	(82.4-83.1)

Results: Fully-fine tuned results

Label fraction	Supervised	MoCo	MoCo + MSE	MoCo + Barlow Twins				
NIH Chest X-ray (AUC (95% CI))								
100%	79.8 (79.2-80.3)	82.4 (81.7-83.0)	81.5 (80.9-82.1)	80.0 (79.5-80.7)				
6%	65.2 (64.6-65.8)	69.8 (69.3-70.4)	70.5 (69.9-71.0)	70.0 (69.2-70.6)				
1%	57.8 (57.2-58.4)	59.2 (58.6-59.9)	61.4 (60.7-62.0)	62.9 (62.3-63.5)				
5	Diab	etic Retinopathy (A	UC (95% CI))					
100%	94.1 (94.1-94.2)	94.6 (94.3-94.6)	96.6 (96.6-96.7)	95.7 (95.7-95.8)				
6%	69.1 (69.0-69.2)	92.4 (92.2-92.6)	95.1 (94.8-95.2)	94.0 (94.0-94.3)				
1%	65.5 (65.4-65.6)	88.1 (88.1-88.4)	93.6 (93.2-93.6)	92.5 (92.2-92.7)				
Breast Cancer Histopathology (F1-score (95% CI))								
100%	82.7 (82.4-83.1)	82.9 (82.6-83.3)	85.7 (85.4-86.0)	86.4 (86.1-86.7)				
6%	82.7 (82.4-83.1)	82.8 (82.4-83.2)	84.6 (84.2-84.9)	84.5 (84.2-84.8)				
1%	80.6 (80.3-81.0)	82.8 (82.5-83.2)	85.1 (84.7-85.4)	84.4 (84.1-84.7)				

Results: Feature reuse

1% labeled data								
Method	Block 1		Block 2		Block 3		Block 4	Performance
	NIH (]h	est X-ray	(Performan	ce	in AUC)	• •
MoCo	0.81		0.80		0.57		0.41	59.2
MoCo + MSE	0.97		0.83		0.65		0.42	61.4
MoCo + Barlow Twins	0.99		0.98		0.76		0.38	62.9
Diabetic Retinopathy (Performance in AUC)								
МоСо	0.87		0.80		0.51		0.19	88.1
MoCo + MSE	0.96		0.78		0.33		0.26	93.6
MoCo + Barlow Twins	0.98		0.83		0.58		0.24	92.5
Histopathology (Performance in F1-score)								
MoCo	0.50		0.55		0.98		0.16	82.8
MoCo + MSE	0.77		0.82		0.58		0.42	85.1
MoCo + Barlow Twins	0.77		0.74		0.54		0.36	84.4
297								

Results: Layer-wise probing

	Block 1	Block 2	Block 3	Block 4	
	NIH Chest	X-ray (AUC (95%	CI))		
МоСо	58.8 (58.4-59.3)	59.5 (59.0-60.0)	65.3 (64.8-65.8)	74.4 (73.9-75.0)	
MoCo + MSE	57.6 (56.9-58.3)	59.9 (59.4-60.4)	69.2 (68.70-69.7)	74.8 (74.2-75.4)	
MoCo + Barlow Twins	56.6 (56.2-57.0)	56.5 (56.1-56.9)	64.2 (63.7-64.6)	73.5 (72.9-74.0)	
	Diabetic Ret	% CI))			
МоСо	68.1 (68.0-68.1)	68.2 (68.2-68.3)	69.2 (69.2-69.5)	74.6 (74.5-74.7)	
MoCo + MSE	68.3 (68.2-68.3)	70.1 (70.0-70.1)	71.2 (71.1-71.3)	84.8 (84.6-85.0)	
MoCo + Barlow Twins	67.2 (67.2-67.3)	68.6 (68.5-68.7)	69.9 (69.4-69.9)	79.7 (79.6-79.7)	
	re (95% CI))				
MoCo	80.9 (80.5-81.3)	81.1 (80.8-81.5)	81.1 (80.7-81.5)	80.7 (80.4-81.1)	
MoCo + MSE	80.6 (80.2-81.0)	81.3 (81.0-81.7)	82.7 (82.4-83.0)	82.5 (82.2-82.9)	
MoCo + Barlow Twins	81.0 (90.7-81.4)	81.1 (80.7-81.5)	82.2 (81.9-82.6)	82.3 (82.0-82.7)	

Results: KS distance

Label fraction	Supervised	MoCo	MoCo + MSE	MoCo + Barlow Twins			
N	VIH Chest X-r	ay (Compared t	o MoCo - Fine tuned on 10	00% labeled data)			
6%	0.040	0.028	0.039	0.034			
1%	0.260	0.244	0.094	0.104			
Diabe	etic Retinopath	NY (Compared to	o MoCo + MSE - Fine tune	d on 100% labeled data)			
6%	0.37	0.21	0.12	0.30			
1%	0.60	0.31	0.18	0.22			
Breast Cancer Histopathology (Compared to MoCo + Barlow twins - Fine tuned on 100% labeled data)							
6%	0.040	0.082	0.036	0.026			
1%	0.155	0.043	0.082	0.033			

Future work

- SSL approaches are typically designed for natural images. In our work, we tried to built models exclusively for medical datasets.
- Having said that, the method proposed in our work is general and can be adapted to different model architectures, SSL methods and datasets.
- In future, we would like to investigate the effectiveness of our proposed method for other datasets, and SSL methods.

Intermediate Layers Matter in Momentum Contrastive Self-Supervised Learning

Aakash Kaku, Sahana Upadhya, Narges Razavian

Github link: https://github.com/aakashrkaku/intermdiate_layer_matter_ssl

