
TestRank: Bringing Order into Unlabeled Test
Instances for Deep Learning Tasks

Yu LI, Min Li, Qiuxia Lai, Yannan Liu*, and Qiang Xu

Reliable Computing Lab. (CURE), The Chinese University of Hong Kong

*Wuheng Lab, ByteDance

Why AI Systems Fail?
• Inproper Training

• Insufficient/Dirty/Maliciously injected training data

• Weak model structure

• Insufficient training epochs

Nvidia DAVE-2 self-driving car platform
A failure caused by the darkness [1]

A failure caused by the rain
in the Chauffeur DNN [2]

[1] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: automated whitebox testing of deep learning systems. <i>Commun. ACM</i> 62, 11 (November 2019), 137–145. DOI:https://doi.org/10.1145/3361566

[2] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated testing of deep-neural-network-driven autonomous cars. In <i>Proceedings of the 40th International Conference on Software Engineering</i>
(<i>ICSE '18</i>). Association for Computing Machinery, New York, NY, USA, 303–314. DOI:https://doi.org/10.1145/3180155.3180220

Hence, testing of AI-based systems is important before deployment

Test Sample Prioritization and Selection

The test prioritization problem:
Given a large amount of unlabeled test data and certain labeling budget,
how to select test cases that reveals more DNN behavior errors (failures)?

Select 100 test cases, detect 2 failures
Select 100 test cases, detect 50 failures!

2. Failures for repairing

1. DL Model

Debugging Center

Unlabeled Data Pool

DL Model

Selected Test Inputs Test Responses

Labeling budgetTraining Center

Failure?Selection

The general testing/debugging overflow.

• Massive unlabeled test instances • Limited labeling resources • DL system is data driven

Test Sample Selection – The Problem of Random Selection

• For a well-trained DL classifier, most of the selected samples can be correctly classified

Light Blue: correctly classified ; Dark Blue: misclassification

t-SNE visualization of CIFAR-10 images

These areas are likely to be selected by random selection

Representive Existing Solutions

• Confidence based (DeepGini [1])
• Confidence score = σ𝑝𝑖

2

• Select test cases with low score
• Example: For output vector [0.1, 0.9] and [0.5, 0.5], they select [0.5, 0.5]

• Bayesian uncertainty based [2]
• Run the DL model with certain dropout rate T times
• Average the model outputs
• Calculate the entropy on the averaged output

• MCP [3]
• Balance confidence and classes among selected test instances

[1] Feng, Y., Shi, Q., Gao, X., Wan, J., Fang, C., & Chen, Z. (2020, July). DeepGini: prioritizing massive tests to enhance the robustness of deep neural networks. In Proceedings of the 29th

ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 177-188).
[2] Byun, T., Sharma, V., Vijayakumar, A., Rayadurgam, S., & Cofer, D. (2019, April). Input prioritization for testing neural networks. In 2019 IEEE International Conference On Artificial Intelligence Testing
(AITest) (pp. 63-70). IEEE.
[3] Shen, W., Li, Y., Chen, L., Han, Y., Zhou, Y., & Xu, B. (2020, September). Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (pp. 410-422). IEEE.

The Problem of Existing Solutions

Observation

- Low confidence/High uncertainty does not mean misclassification

- Misclassifications can have high confidence/low uncertainty

Histogram of confidence and uncertainty of a CIFAR-10 model

Motivational Example

If we make use of these contextual information, we can detect both near-boundary and remote failures

1. Existing approaches aim to

select near-boundary instances

2. However, near-boundary instances

are not necessarily been misclassified

(false positives)

3. What’s worse, they ignore those

bugs that are far from the decision

boundary, i.e., remote failures

(false negatives)

4. In the meantime, the historical test

inputs and responses are informative

(e.g., previously labeled test instances)

Core Idea of Our Solution –TestRank

• Intrinsic attributes
• The output vectors from the DL model

• Though not accurate, but a still useful indicator of near-boundary failures

• Contextual attributes
• Summarized correctness from the neighboring labeled samples

• E.g., Most labeled neighbors are misclassified samples

• Help intrinsic attributes to reduce false positives and false negatives

TestRank make use of both Intrinsic and contextual attributes

The Overflow of TestRank

latent

vectors

Graph-based Semi-

supervised Model

a. Intrinsic attributes extraction

Failure

Probability

b. Contextual attributes extraction

MLP Rank

Selected

Test

Inputs 𝑋𝑠

𝒆𝒎

Unlabeled

Data Pool

Labeling budget

DL Model under Test

Similarity graph

positive negative unlabeled

Labeled

Data Pool
Feature Extractor

𝒆𝒄

- Combination of intrinsic (a) and contextual attributes (b) for failure probability estimation
- Graph Neural Networks (GNN) is good at extracting contextual features

Graph Construction

Latent vector

Binary Label for labeled data

positive negative unlabeled

k-NN
Graph

e.g., k = 3, 𝑋𝑙 + 𝑋𝑢 = 𝑁
Computational complexity: 𝑂 𝑁2

• k-nearest neighbor (k-NN) graph: connecting the nearest k neighbors
• The connections between unlabeled data are less important
• Approximate k-NN graph:

• only connect unlabeled data with labeled data, and labeled data to labeled data

Approximate
k-NN Graph

𝑋𝑙 = P, 𝑋𝑢 = Q, P ≪ Q
Computational complexity: 𝑂 𝑃𝑄

Graph Neural Network for Contextual Attributes Extraction

• Apply semi-supervised GNN on the similarity graph G(H, 𝐸𝑑𝑔𝑒)

• A GCN layer: 𝐻𝑖+1 = 𝛼(𝐷−
1

2 መ𝐴 𝐷−
1

2 𝐻𝑖 𝑊)

positive negative unlabeled

ℎ𝑖
0, 𝑦

ℎ𝑗
0

𝐸𝑑𝑔𝑒𝑖𝑗

M GNN layers

Aggregate information from neighbors

Train GNN with CE loss

Extract the contextual attributes

Aggregate Transform Activate

Comparison of TestRank with Baseline Methods
- Metric

𝑇𝑅𝐶 =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐵𝑢𝑔𝑠

min(𝐵𝑢𝑑𝑔𝑒𝑡, # 𝑇𝑜𝑡𝑎𝑙 𝑏𝑢𝑔𝑠)

- The table shows the average TRC calculated for budget less than the number of total bugs

- The contextual information is useful to improve test prioritization effectiveness
- The context attributes alone are not sufficient
- The combination of intrinsic and contextual attributes outperfroms other methods for a large margin

Ablation Study

The impact of the number of neighbors 𝑘 on the debug
effectiveness (STL10 dataset)

The influence of approximated kNN construction

TextRank can achieve good performance in a wide range of
𝑘 values.

The average influence of the approximation is 0.95%,
which is small.

Conclusion

• We propose TestRank, a novel test prioritization framework for DL systems

• TestRank not only leverages the intrinsic attributes of an input instance, but also extracts
the contextual attributes from the DL model’s historical inputs and responses

• TestRank constantly outperform other test prioritization methods

Thanks for Listening !

Q & A

