TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

Yu LI, Min Li, Qiuxia Lai, Yannan Liu*, and Qiang Xu Reliable Computing Lab. (CURE), The Chinese University of Hong Kong *Wuheng Lab, ByteDance

Uber crash shows 'catastrophic failure' of self-driving technology, experts say

Tesla needs to fix its deadly Autopilot problem

Tesla is facing heat from federal officials following an investigation into a fatal

Concerns raised about futu collision in Arizona was fail

• Video released of fatal Ub

By Rebecca Heilweil | Feb 26, 2020, 1:50pm EST

crash involving its Autopilot.

▲ Uber dashcam footage shows lead up t Video of the first <u>self-drivin</u>, "catastrophic failure" by Ub who said the footage showe most basic functions.

Wrongfully Accused by an Algorithm

In what may be the first known case of its kind, a faulty facial recognition match led to a Michigan man's arrest for a crime he did not commit.

Why AI Systems Fail?

- Inproper Training
 - Insufficient/Dirty/Maliciously injected training data
 - Weak model structure
 - Insufficient training epochs

Nvidia DAVE-2 self-driving car platform

A failure caused by the darkness [1]

(a) Input 1

(b) Input 2 (darker version of 1)

1.1 original

1.2 with added rain

A failure caused by the rain in the Chauffeur DNN [2]

Hence, testing of AI-based systems is important before deployment

[1] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2019. DeepXplore: automated whitebox testing of deep learning systems. <i>Commun. ACM</i> 62, 11 (November 2019), 137–145. DOI:https://doi.org/10.1145/3361566

[2] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: automated testing of deep-neural-network-driven autonomous cars. In <i>Proceedings of the 40th International Conference on Software Engineering</i> (<i>ICSE '18</i>). Association for Computing Machinery, New York, NY, USA, 303–314. DOI:https://doi.org/10.1145/3180155.3180220

Test Sample Prioritization and Selection

• DL system is data driven • Massive unlabeled test instances • Limited labeling resources

The test prioritization problem: Given a large amount of unlabeled test data and certain labeling budget, how to select test cases that reveals more DNN behavior errors (failures)?

The general testing/debugging overflow.

Select 100 test cases, detect 2 failures Select 100 test cases, detect 50 failures! ✓

Test Sample Selection – The Problem of Random Selection

• For a well-trained DL classifier, most of the selected samples can be correctly classified

These areas are likely to be selected by random selection

Light Blue: correctly classified ; Dark Blue: misclassification t-SNE visualization of CIFAR-10 images

Representive Existing Solutions

- Confidence based (DeepGini [1])
 - Confidence score = $\sum p_i^2$
 - Select test cases with low score
 - Example: For output vector [0.1, 0.9] and [0.5, 0.5], they select [0.5, 0.5]
- Bayesian uncertainty based [2]
 - Run the DL model with certain dropout rate T times
 - Average the model outputs
 - Calculate the entropy on the averaged output
- MCP [3]
 - Balance confidence and classes among selected test instances

[3] Shen, W., Li, Y., Chen, L., Han, Y., Zhou, Y., & Xu, B. (2020, September). Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 410-422). IEEE.

^[1] Feng, Y., Shi, Q., Gao, X., Wan, J., Fang, C., & Chen, Z. (2020, July). DeepGini: prioritizing massive tests to enhance the robustness of deep neural networks. In *Proceedings of the 29th* ACM SIGSOFT International Symposium on Software Testing and Analysis (pp. 177-188).

^[2] Byun, T., Sharma, V., Vijayakumar, A., Rayadurgam, S., & Cofer, D. (2019, April). Input prioritization for testing neural networks. In 2019 IEEE International Conference On Artificial Intelligence Testing (AITest) (pp. 63-70). IEEE.

The Problem of Existing Solutions

Histogram of confidence and uncertainty of a CIFAR-10 model

Observation

- Low confidence/High uncertainty does not mean misclassification
- Misclassifications can have high confidence/low uncertainty

Motivational Example

If we make use of these contextual information, we can detect both near-boundary and remote failures

Core Idea of Our Solution –TestRank

TestRank make use of **both** Intrinsic **and** contextual attributes

Intrinsic attributes

- The output vectors from the DL model
- Though not accurate, but a still useful indicator of near-boundary failures

Contextual attributes

- Summarized correctness from the neighboring labeled samples
 - E.g., Most labeled neighbors are misclassified samples
- Help intrinsic attributes to reduce false positives and false negatives

The Overflow of TestRank

- Combination of intrinsic (a) and contextual attributes (b) for failure probability estimation
- Graph Neural Networks (GNN) is good at extracting contextual features

Graph Construction

- k-nearest neighbor (k-NN) graph: **connecting the nearest k neighbors**
- The connections between unlabeled data are less important
- Approximate k-NN graph:
 - only connect unlabeled data with labeled data, and labeled data to labeled data

Graph Neural Network for Contextual Attributes Extraction

- Apply semi-supervised GNN on the similarity graph G(H, Edge)
- A GCN layer: $H_{i+1} = \alpha (\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} H_i W)$ Activate Aggregate Transform

/* KNN Graph construction */ ² A, Edge = $knn \ qraph(\overline{\mathbf{X}}, k)$; /* Train GNN */ $\tilde{A} = Edge + I_N;$ 4 $\tilde{\mathbf{D}} = \sum_{i} \tilde{\mathbf{A}}_{i,i};$ 5 $\mathbf{H}^0 = \overline{\mathbf{X}};$ ⁶ **for** *Number* of training epochs **do** → M GNN layers **for** l = 0, 1, ..., M **do** 7 $| H^{l+1} = \sigma(\tilde{\mathbf{D}}^{-\frac{1}{2}}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-\frac{1}{2}}\mathbf{H}^{l}\Theta^{l}), \longrightarrow \text{Aggregate information from neighbors}$ 8 end 9 $Output = FCLayer(\mathbf{H}^{M+1});$ 10 $loss = CrossEntropyLoss(Output, Y_L); \longrightarrow$ Train GNN with CE loss 11 Back propagation; 12 Update Θ ; 13 14 end 15 $E_c = H^{M+1}$ [unlabeled_index]; \longrightarrow Extract the contextual attributes

Comparison of TestRank with Baseline Methods

- Metric

 $TRC = \frac{\# Detected Bugs}{\min(Budget, \ \# Total bugs)}$

- The table shows the **average TRC** calculated for budget less than the number of total bugs

Dataset	Model ID	Random	МСР	DSA	Uncertainty	DeepGini	TestRank Contextual-Only	TestRank
CIFAR-10	А	30.15	58.25	60.93	58.09	67.47	51.39	76.56
	В	34.18	46.46	62.34	61.85	67.80	58.85	87.87
	С	34.27	65.25	64.47	63.10	71.15	75.33	85.53
SVHN	А	10.16	39.98	55.47	58.29	63.47	44.16	66.06
	В	11.85	38.07	57.96	58.06	63.85	51.26	76.36
	С	23.41	65.33	69.34	71.80	81.68	93.99	95.32
STL10	А	39.25	66.62	64.56	64.30	69.70	60.09	79.00
	В	42.60	69.97	67.12	65.30	72.89	71.90	80.96
	С	46.05	71.88	66.60	70.34	73.34	79.55	88.67

- The contextual information is useful to improve test prioritization effectiveness
- The context attributes alone are not sufficient

- The combination of intrinsic and contextual attributes outperfroms other methods for a large margin

Ablation Study

Dataset	Model	TestRank (%)	TestRank w/o approx. (%)	
	А	76.56	77.77 (+1.21)	
CIFAR-10	В	87.87	87.70 (-0.17)	
	С	85.53	88.10 (+2.57)	
	А	66.06	63.87 (-2.19)	
SVHN	В	76.36	82.04 (+5.68)	
	С	95.32	96.62 (+1.30)	
	А	79.00	80.50 (+1.50)	
STL10	В	80.96	78.98 (-1.98)	
	С	88.67	89.32 (+0.65)	
Averag	+0.95			

The influence of approximated kNN construction

The average influence of the approximation is 0.95%, which is small.

The impact of the number of neighbors k on the debug effectiveness (STL10 dataset)

TextRank can achieve good performance in a wide range of k values.

Conclusion

- We propose *TestRank*, a novel test prioritization framework for DL systems
- *TestRank* not only leverages the intrinsic attributes of an input instance, but also extracts the contextual attributes from the DL model's historical inputs and responses
- TestRank constantly outperform other test prioritization methods

Thanks for Listening !

Q & A