Diversity Enhanced Active Learning with Strictly Proper Scoring Rules

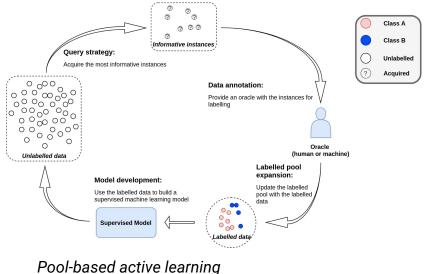
Wei Tan,

Lan Du,

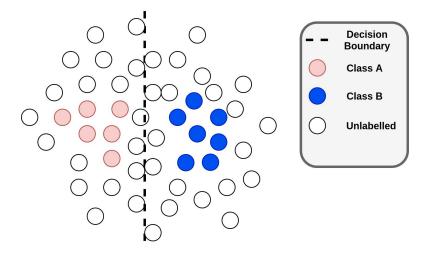
Wray Buntine

1

- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance

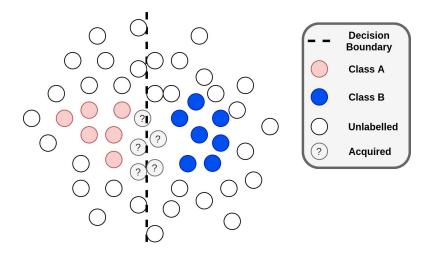


- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance
- Issues:
 - what is a good uncertainty-based acquisition function



Acquisition Example: Two classes are predicted by the decision boundary of the trained model

- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance
- Issues:
 - what is a good uncertainty-based acquisition function

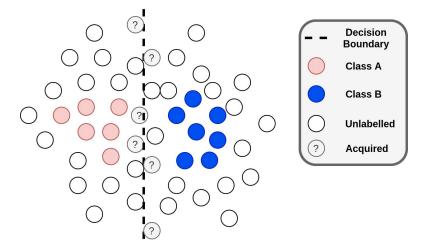


Uncertainty-based: acquiring unlabelled instances near the decision boundary

- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance

• Issues:

- what is a good uncertainty-based acquisition function
- > also, how to enhance the diversity

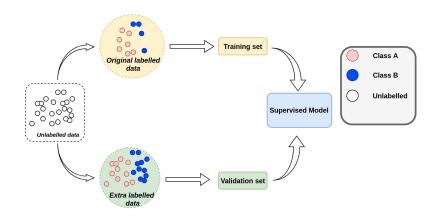


Uncertainty & Diversity: acquiring a diverse set of instances near the decision boundary

- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance

• Issues:

- what is a good uncertainty-based acquisition function
- \circ $\,$ also, how to enhance the diversity
- how to use a validation set required for deep learning

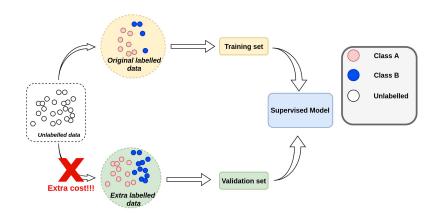


Model Training Setup: most researchers uses the extra labelled data for the validation set in active learning

- Purposes:
 - recognise the most informative instances to an oracle for labelling
 - minimise the cost of labelling while preserving the model performance

• Issues:

- what is a good uncertainty-based acquisition function
- \circ $\,$ also, how to enhance the diversity
- how to use a validation set required for deep learning



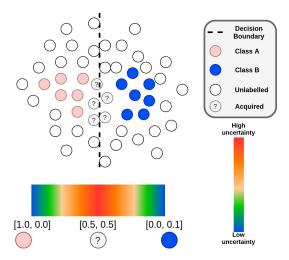
Model Training Setup: most researchers uses the extra labelled data for the validation set in active learning

Background

- Uncertainty-based approaches:
 - Maximum Entropy (Holub et al., 2008)

Acquisition Function:

$$x_{ME} = \arg \max_{x} (-\sum_{i} p(\hat{y_i}|x;\theta) \log p(\hat{y_i}|x;\theta))$$



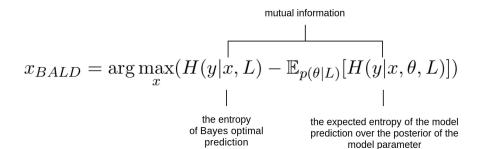
Measure of Uncertainty Diagram: Maximum Entropy acquires unlabelled instances with the high uncertainty. Maximum entropy fails when selecting instances in batches because the instances contain similar information.

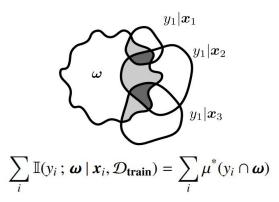
Background

• Uncertainty-based approaches:

- Maximum Entropy (Holub et al., 2008)
- Bayesian Active Learning by Disagreement (Houlsby et al.,2011)

Acquisition Function:





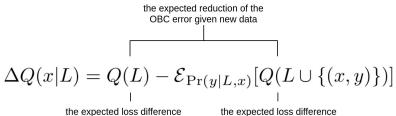
Mutual Information I-diagram: BALD acquires unlabelled instances with the high mutual information. Areas in grey contribute to the BALD score. BALD fails because the areas in dark grey are double-counted (Kirsch et al., 2019)

Background

• Uncertainty-based approaches:

- Maximum Entropy (Holub et al., 2008)
- Bayesian Active Learning by Disagreement (Houlsby et al.,2011)
- Expected Error/Loss Reduction (Roy and McCallum, 2001; Zhao et al., 2021)

Acquisition Function:



the expected loss difference between the OBC and the optimal classifier the expected loss difference between the OBC and the optimal classifier given new data

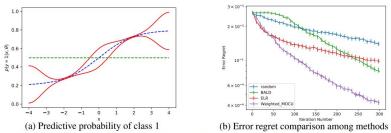


Figure 1: (a) Predictive probability of class 1 under uncertainty: the red lines indicate the upper and lower bounds of the predictive probability; the blue dash line is the mean of the predictive probability; the green dash line indicates that the probability is equal to 0.5. (b) Active learning performance comparison.

Uncertainty and Error Analysis: Provides an example of binary classification with one feature where both BALD and ELR methods fail (Zhao et al., 2021)

Bayesian Estimate of Mean Proper Scores

• Apply the Expected Error Reduction framework

 $\Delta Q(x|L) = Q(L) - \mathcal{E}_{\Pr(y|L,x)}[Q(L \cup \{(x,y)\})], \qquad (1)$

• Define a better expected loss function with strictly proper scoring rules

$$Q_{S}(L) = \mathcal{E}_{\Pr(x)\Pr(\theta|L)}[\mathcal{E}_{\Pr(y|\theta,x)}[S(\Pr(\cdot \mid \theta, x), y) - S(\Pr(\cdot \mid L, x), y)]]$$
(3) Arbitrary strictly proper scoring rule

$$= \mathcal{E}_{\Pr(x)\Pr(\theta|L)}[B(\Pr(\cdot \mid L, x), \Pr(\cdot \mid \theta, x))]$$
(4) Bregman divergence

$$= \mathcal{E}_{\Pr(x)}[\mathcal{E}_{\Pr(\theta|L)}[G(\Pr(\cdot \mid \theta, x))] - G(\Pr(\cdot \mid L, x))]$$
(5) Arbitrary strictly convex function

• The acquisition function in a general form can be defined as

$$\Delta Q_S(x|L) = \mathcal{E}_{\Pr(x')}[\mathcal{E}_{\Pr(y|L,x)}[G(\Pr(\cdot \mid L, (x, y), x'))] - G(\Pr(\cdot \mid L, x'))]$$
(6)

Bayesian Estimate of Mean Proper Scores

• Algo 2 shows the Non-batch approach

 $\Delta Q_S(x|L) = \mathcal{E}_{\Pr(x')}[\mathcal{E}_{\Pr(y|L,x)}[G(\Pr(\cdot \mid L, (x, y), x'))] - G(\Pr(\cdot \mid L, x'))]$ (6)

- Apply two strictly convex functions
 - CoreMse (Squared error scoring rule as Brier score)

$$G_{MSE}(q(\cdot)) = \sum_{y} q(y)^2 - 1$$

• CoreLog (logarithmic scoring rule)

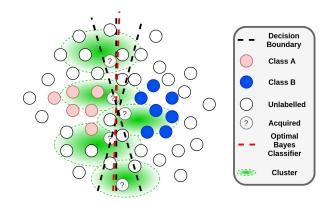
 $G_{log}(q(\cdot)) = -I(q(\cdot))$

Algorithm 2 Estimate of $\operatorname{argmax}_{x \in U} \Delta Q(x|L)$ Require: unlabelled pool U, estimation pool X1: for $x \in U$ do2: $Q_x = 0$ 3: for $x' \in X$ do4: $Q_x += \Delta Q(x|L, x')$ 5: return $\operatorname{argmax}_{x \in U} Q_x$

Algo 2 represents a single instance acquisition based on the maximum expected loss reduction given the new data

Bayesian Estimate of Mean Proper Scores

- Batch mode algorithm
 - Generate the vector representation based on the expected loss reduction given new data
 - Apply the K-means clustering to find a diverse batch of samples with the most uncertainty information



Algorithm 3 Finding a diverse batch

Require: unlabelled pool U, batch size B **Require:** estimation pool X, top fraction T 1: $\forall_{x \in U} Q_x = 0$ 2: for $x \in U, x' \in X$ do 3: $Q_x += vec_{x,x'} = \Delta Q(x|L, x')$ 4: $V \leftarrow topk(Q, T * |U|)$ 5: $batch = \emptyset$ 6: centroids = k-Means centers ($vec_{x \in V}, B$) 7: for $c \in centroids$ do 8: $batch \cup= \{ \operatorname{argmin}_{x \in V} ||c - vec_x|| \}$ 9: return batch

Algo 3 represents the **batch** instances acquisition based the representation of the expected loss reduction

• Dataset and Model

TABLE 3.2: Datasets and the used language model

Dataset	Unlabelled/Test sizes	#Classes	Lang. Model	Initial labelled size
AG NEWS	120,000 / 7,600	4	DistilBERT	26
PUBMED 20K RCT	15,000 / 2,500	5	DistilBERT	26
IMDB	25,000 / 25,000	2	DistilBERT	26
SST-5	$8544 \ / \ 2210$	5	DistilBERT	26

• Dynamic validation:

• generate a new train/validation pair for each element of the ensemble

Baseline

- Random
- Maximum Entropy (Holub et al., 2008)
- BALD (Houlsby et al.,2011)
- MOCU/ELR (Zhao et al., 2021)
- WMOCU (Zhao et al., 2021)
- BADGE (Ash et al., 2020)
- ALPS (Yan et al., 2020)

Experiment Result

- Model Performance for non-batch (batch size 1)
 - Learning curve
 - Pairwise comparison matrix

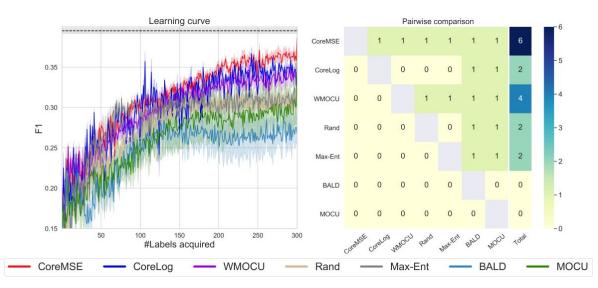


Figure 1: Performance on SST-5 dataset. The left half illustrates the learning curve, while the right half illustrates the matrix of paired comparisons.

Experiment Result

- Model Performance for batch mode (batch size 50)
 - Learning curve
 - Pairwise comparison matrix

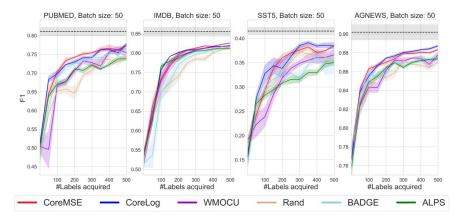
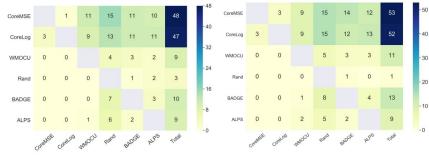


Figure 2: Learning curves of batch size 50 for PUBMED, IMDB, SST-5 and AG NEWS.



(a) F1-based pairwise comparison

(b) Accuracy-based pairwise comparison

Figure 3: Pairwise comparison matrices of batch active learning strategies.

Experiment Result

- Model performance comparison by different validation setup
 - Dynamic validation set
 - Constant validation set
 - No validation set

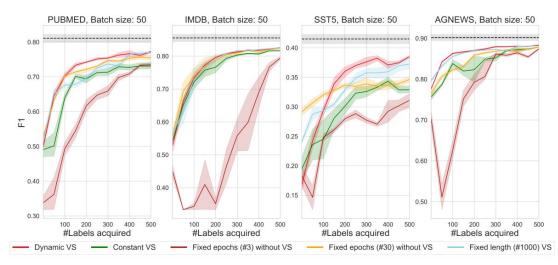


Figure 6: Learning curves of the model training with a dynamic validation set, constant validation set, fixed # epochs without validation set, fixed length # labels validation set for CoreMSE

Future work

- Utilise the computation cost via Monte Carlo dropout
- Extend our algorithm on the other tasks such as image classification, NER etc

Thank you !!!