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Acquisition Example: Two classes are predicted by the
decision boundary of the trained model



Active Learning

e Purposes:
o recognise the most informative instances OI

( ecision
to an oracle for labelling O 1 O S
o minimise the cost of labelling while OQOOQO O ® O () classa
preserving the model performance O 0 @O @ cuss
| . 000 %G ere°
o SSUGS. O O O @I@ .’ O O Unlab.elled
> what.isf a good uhcertainty—based o O o0 O (2)  Acquired
acquisition function O O o _ 00
' O
O QbO O

Uncertainty-based: acquiring unlabelled instances
near the decision boundary



Active Learning

e Purposes:

. : . ,
o recognise the most |rTformat|ve Instances o @ o ————
to an oracle for labelling 1 = = Boundary
o minimise the cost of labelling while OQOOQ@ O ® O () classa
preserving the model performance O O 0O @ cuss
009 % e @
o |SSUGS: O O O IO . ’ O O Unlabelled
o what is a good uncertainty-based o O 83 ") O ((?)  Acquired |
acquisition function oo o _ 00
> also, how to enhance the diversity O G O O
o O

Uncertainty & Diversity: acquiring a diverse set of
instances near the decision boundary



Active Learning

e Purposes:
o recognise the most informative instances
to an oracle for labelling
o minimise the cost of labelling while
preserving the model performance
e Issues:
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Model Training Setup: most researchers uses the extra
labelled data for the validation set in active learning
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Background

e Uncertainty-based approaches: oG o =
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Measure of Uncertainty Diagram: Maximum Entropy
acquires unlabelled instances with the high
uncertainty. Maximum entropy fails when selecting
instances in batches because the instances contain
similar information.



Background

e Uncertainty-based approaches:

o Maximum Entropy (Holub et al., 2008)
> Bayesian Active Learning by
Disagreement (Houlsby et al.,2011)
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Mutual Information I-diagram: BALD acquires
unlabelled instances with the high mutual information.
Areas in grey contribute to the BALD score. BALD fails
because the areas in dark grey are double-counted
(Kirsch et al., 2019)



Background

e Uncertainty-based approaches:

o Maximum Entropy (Holub et al., 2008)
o  Bayesian Active Learning by
Disagreement (Houlsby et al.,2011)
> Expected Error/Loss Reduction (Roy and

ply=1|x,6)
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Figure 1: (a) Predictive probability of class 1 under uncertainty: the red lines indicate the upper

Ve . and lower bounds of the predictive probability; the blue dash line is the mean of the predictive

AchISltlon Function: probability; the green dash line indicates that the probability is equal to 0.5. (b) Active learning
performance comparison.

the expected reduction of the

OBC e"°f9“|'e“ new data Uncertainty and Error Analysis: Provides an example
| | of binary classification with one feature where both

BALD and ELR methods fail (Zhao et al., 2021)
AQ(z|L) = Q(L) — Epr(y|L,x) QLU {(z,y)})]
| |

the expected loss difference the expected loss difference
between the OBC and the between the OBC and the
optimal classifier optimal classifier given new data




Bayesian Estimate of Mean Proper Scores

e Apply the Expected Error Reduction framework

AQ(le) — Q(L) o gPr(y|L,m) [Q(L U {($, y)})] ) (1)

e Define a better expected loss function with strictly proper scoring rules

QS(L) - gPr(m) Pr(0|L) [SPr(y|0,m) [S(PI‘( ‘ 9, :17), y) = S(PI‘( ‘ L, :17), y)” (3) Arbitrary strictly proper scoring rule
= gPr(m) Pr(6|L) [B(PI‘( | L, :C), PI‘(- | 9, x))] (4) Bregman divergence
— gPr(x) [gPr(0|L) [G(PI‘( ‘ 9, :1:))] — G(PI‘( | L, .CC))] (5) Arbitrary strictly convex function

e The acquisition function in a general form can be defined as

AQs(x|L) = Epr)EpryiL.a)G(Pr(- | L, (2,y),2"))] — G(Pr(- | L,a"))] (6)
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Bayesian Estimate of Mean Proper Scores

e Algo 2 shows the Non-batch approach
AQs(zlL) = Epr)[ErryiroG(Pr( | L, (2,9),2"))] — G(Pr(- | L,2"))] (6)

¢ Apply two SthCtly convex functions Algorithm 2 Estimate of argmax,; AQ(z|L)
o  CoreMse (Squared error scoring rule as Brier score)

Guse(q(r) =32, aly)* — 1

o  CorelLog (logarithmic scoring rule)

Require: unlabelled pool U, estimation pool X
I: forx € U do
2: Q: =0
3: for 2’ € X do
4 Q= += AQ(z|L,2')
s,

: return argmax, oy Q=

GlOQ (Q( )) - _I(q(.)) Algo 2 represents a single instance acquisition based
on the maximum expected loss reduction given the new
data
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Bayesian Estimate of Mean Proper Scores

e Batch mode algorithm

@)

Generate the vector representation
based on the expected loss reduction
given new data

Apply the K-means clustering to find a
diverse batch of samples with the
most uncertainty information
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Algorithm 3 Finding a diverse batch

Require: unlabelled pool U, batch size B
Require: estimation pool X, top fraction T’
l: vwEUQw =0

2: forz e U,z' € X do

3: Qe += vecy »» = AQ(z|L,z")

4: V « topk(Q,T * |U|)

5: batch =

6: centroids = k-Means centers (vecgev, B)
7: for c € centroids do

8 batch U= {argmin ., ||c — vec:||}
9

: return batch

Algo 3 represents the batch instances acquisition
based the representation of the expected loss reduction
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Experi

ment Setup

e Dataset and Model

TABLE 3.2: Datasets and the used language model

. Unlabelled/ Test o Initial
Dataset sizes #Classes Lang. Model labelled size
AG NEWS 120,000 / 7,600 4 DistilBERT 26
PUBMED 20K RCT 15,000 / 2,500 5 DistilBERT 26
IMDB 25,000 / 25,000 2 DistilBERT 26
SST-5 8544 / 2210 5 DistilBERT 26

e Dynamic validation:

o

generate a new train/validation pair for each element of the ensemble

e Baseline

o

O O O O O O

Random

Maximum Entropy (Holub et al., 2008)
BALD (Houlsby et al.,2011)
MOCU/ELR (Zhao et al., 2021)
WMOCU (Zhao et al., 2021)

BADGE (Ash et al., 2020)

ALPS (Yan et al., 2020)
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Experiment Result

e Model Performance for non-batch (batch size 1)
O  Learning curve

O  Pairwise comparison matrix

Learning curve Pairwise comparison

6
CoreMSE 1 1 1 1 1 1
5
Corelog 0 0 0 0 i 1 2
4
wMocu 0 0 1 1 1 1
Rand 0 0 0 0 1 el 2 3
Max-Ent 0 0 0 0 1 1 2 L5
BALD O 0 0 0 0 0 0
-1
MOCU 0 0 0 0 0 0 0

50 100 150 200 250 300
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s & "
WMOCU Rand  =—— Max-Ent =— BALD — MOCU
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Figure 1: Performance on SST-5 dataset. The left half illustrates the learning curve, while the right
half illustrates the matrix of paired comparisons. 15



Experiment Result

Model Performance for batch

mode (batch size 50)

O

O

Learning curve
Pairwise comparison matrix

PUBMED, Batch size: 50 IMDB, Batch size: 50 SST5, Batch size: 50 AGNEWS, Batch size: 50
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Figure 2: Learning curves of batch size 50 for PUBMED, IMDB, SST-5 and AG NEWS.
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Figure 3: Pairwise comparison matrices of batch active learning strategies.
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Experiment Result

e Model performance comparison by different validation setup

o  Dynamic validation set
o  Constant validation set
o No validation set

PUBMED, Batch size: 50 IMDB, Batch size: 50 SST5, Batch size: 50 AGNEWS, Batch size: 50
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Figure 6: Learning curves of the model training with a dynamic validation set, constant validation set,

fixed # epochs without validation set, fixed length # labels validation set for CoreMSE 17



Future work

e Utilise the computation cost via Monte Carlo dropout
e Extend our algorithm on the other tasks such as image
classification, NER etc
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