
Test-Time Classifier Adjustment Module for 
Model-Agnostic Domain Generalization

Yusuke Iwasawa, and Yutaka Matsuo

1NeurIPS2021 Spotlight presentation



Robustness of DNNs and Cybersecurity

• DNNs become an important component of intelligent system. 

– Preventing catastrophic failure of DNNs become important topic. 

• Its behavior under distribution shift might cause security issue. 

– Adversarial attack

– Weather change in autonomous driving

– etc
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Domain Generalization (DG)
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Training on several source domains 
(Art, Cartoon, and Photo). 

Testing on unseen domain 
(Sketch). 

Domain shift

Domain Generalization is a common benchmark setup to the robustness of a predictor
to distribution shift (such as variation in light, weather, or object backgrounds) 



Existing Domain Generalization Algorithm
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Common question: 
How to regularize the predictor?

■ Domain Invariant feature learning
• Reduce domain gaps on a space of latent 

representations. 
• DANN, CORAL, MMD, etc. 

■ Meta learning
• Learn how to regularize the model to 

improve the robustness. 
• MLDG etc. 

■ Many others
• IRM regularize gradient norm penalty. 
• Domain Mixup implicitly enhance domain 

invariance using data augmentation. 



… But ERM is Often Better than DG methods 
[Gulrajani+ICLR2011]
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Proposal: Test-Time Adaptation for DG
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Labeled data from source domains 
are available

Unlabeled and online data from target
domain are available

Research Question: How can we use off-the-shelf data available at test-time 
to correlate its prediction by itself?



SGD during Test-Time is not Desirable
• Natural way to achieve the goal is to use SGD at test-time. 

– SHOT [Liang+2020] and Tent [Wang+2021] updates parameters to 
minimize prediction entropy. 

• Using SGD during test-time is not desirable. 
– (1) It harm inference throughput. 
– (2) It can lead catastrophic failure. 

• Tent [Wang+2021] avoid the second issue by only updating 
small portion of parameters (BN layer).  
– But many recent architecture (BiT, ViT, and MLP-Mixer) does not 

employ BN. 7



Proposal: Test-Time Template Adjuster (T3A)
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(1) Pseudo Prototype
Update templates using pseudo 
label and intermediate features. 

(2) Prototypical Classification
Classify each sample based on its 
distance to the pseudo-prototype

𝒙𝒙

Unlabeled 
test data 𝒙𝒙

This procedure will be repeated every time the model encounter new examples

𝑐𝑐𝑘𝑘: Template 
(prototype) of  class k

ℤ𝑘𝑘: History of 
features �𝑦𝑦 = 𝑘𝑘

average



T3A Implicitly Reduce Prediction Entropy
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Source vs. Target 
(ERM w/ Resnet50)

ERM vs T3A (vs. Tent)

Source <<< Target ERM >> T3A



Experimental Setup

• Dataset
– VLCS, PACS, OfficeHome, and TerraIncognita

• Experimental procedure strictly follows DomainBed
[Gulrajani+ICLR2011]
– Training-domain validation for selecting hyperparameters
– All experiments repeat 3 times with different seeds
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Results: Comparison to DG and Tent
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DG 
[Gulrajani+2021]

ERM + T3A
(and Tent)

CORAL + T3A
(and Tent)

T3A > ERM
T3A > TTA

T3A >= DG

T3A > CORAL



Results: Performance on Various Backbone Networks

12

Convolution

ViT

Hybrid

MLP-Mixer



Results: Performance on Various Backbone Networks
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Concluding Remarks
• We present T3A, optimization-free test-time adaptation 

method for improves robustness against domain shift.
– vs. DG: T3A focus on test-phase
– vs. Test time adaptation: T3A is optimization-free

• Our method stably improves robustness against domain shift on 
various backbone networks and various datasets. 

• Further results will be presented on paper and poster. 
– Full results for each datasets and backbone networks. 
– Hyperparameter sensitivity. 
– Comparison with various test-time adaptation methods. 
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Comparison with Existing Test-Time Adaptation

Method Description Optimization-
free Model-agnostic

Pseudo Label Update parameters to minimize cross 
entropy with pseudo label. ✓

SHOT Update parameters w/ PL loss, entropy, ✓

TENT Update BN transformation parameters 
to minimize entropy. 

BN Norm Updates BN statistics during test time. ✓

T3A (Ours) Replace classifier templates w/ 
pseudo labeling ✓ ✓

15


	Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization
	Robustness of DNNs and Cybersecurity
	Domain Generalization (DG)
	Existing Domain Generalization Algorithm
	… But ERM is Often Better than DG methods [Gulrajani+ICLR2011]
	Proposal: Test-Time Adaptation for DG
	SGD during Test-Time is not Desirable
	Proposal: Test-Time Template Adjuster (T3A)
	T3A Implicitly Reduce Prediction Entropy
	Experimental Setup
	Results: Comparison to DG and Tent
	Results: Performance on Various Backbone Networks
	Results: Performance on Various Backbone Networks
	Concluding Remarks
	Comparison with Existing Test-Time Adaptation

