Efficient exploration in deep cooperative multi-agent reinforcement learning
(MARL) still remains challenging in complex coordination problems. In this
paper, we introduce a novel Episodic Multi-agent reinforcement learning with

Q-values as intrinsic rewards for coordinated exploration and utilize episodic
memory to exploit explored informative experience to boost policy training.

Contributions:
(i) We present a novel multi-agent curiosity-driven exploration framework
which can be adopted in many value-based MARL algorithms.

agent reinforcement learning.
(iif) Our method achieves state-of-the-art on the challenging tasks in the
StarCraft || micromanagement benchmark.

Curiosity-driven exploration, called EMC. We use prediction errors of individual

(i) We are the first to utilize the mechanism of episodic control in deep multi-

Episodic Multi-agent Reinforcement Learning with Curiosity-driven Exploration
Lulu Zheng™: Jiarui Chen™3, Jianhao Wang', Jiamin He#, Yujing Hu3, Yingfeng Chen3, Changjie Fan3, Yang Gao?, Chongjie Zhang’

1 Institute for Interdisciplinary Information Sciences, Tsinghua University

2 Department of Computer Science and Technology, Nanjing University

3 Fuxi Al Lab, NetEase
4 Department of Computing Science, University of Alberta

Didactic Example

An illustrative gridworld game requiring coordinated exploration

i Challenges:

(i) Partial observability: one agent cannot
be observed by the other until it gets into
the shaded area.

(ii) Sparse Reward: positive reward if and
only if the two agents arrive at the goal
moving Agent.< grid at the same time. Otherwise, they will

¢ get incoordinate punishment.

Moving Agent1

Background:
Curiosity is a type of intrinsic motivation for exploration, which usually uses

cannot be adopted into MARL directly.

Problem: In which space to define curiosity in MARL?
Centralized (Global) Space: It is inefficient to find structured but sparse
interactions between agents in the exponentially growing state space.

observability in the MARL setting.

observation histories with scalability; (2) captures the influence from other
agents due to the implicit credit during centralized training.
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prediction errors on different spaces. However, due to the exponentially growing
state space and partial observability in MARL, curiosity-driven exploration methods

Decentralized (Local) Space: it will fail to guide agents to coordinate due to partial

Middle Point (Individual Q-values Space): (1) provides a novelty measure of joint
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Analysis:

Centralized (Global) Space: encourages agents to visit all configurations without
bias which is inefficient and not scalable.

Decentralized (Local) Space: cannot encourage agents to coordinate due to the
partial observability in decentralized execution.

Our method: can capture valuable and spare interactions among agents and bias
exploration into new or promising states.

Results: Therefore, only our methods can win the game while other methods failed.
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Curiosity Module: use the prediction error of local Q-values as intrinsic rewards
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Episodic Memory: record the maximum remembered return of the current state

H(¢(s1)) = {maX{H(¢(§t)),Rt(3t,at)} if |¢(31) — p(st)|l2 < O

Ri(st, ay) otherwise

Results of super hard maps in SMAC: Overall performance:
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Conclusion

This paper introduces EMC, a novel episodic multi-agent curiosity-
driven exploration framework that allows for efficient coordinated

exploration and boosted policy training by exploiting explored L
informative experiences. EMC achieves state-of-the-art on challenging R
tasks in the StarCraft || micromanagement benchmark. E b




